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NOTATION
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xmod r
withr > o0
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delta) :
Rea :
{al ... }:

the set of points belonging to either of the sets 4 and B, usually called
the union of 4 and B.
the set of points belonging to any of the sets 4;.

the set of points belonging to both of the sets 4 and B, usually called
the product or intersection of the sets 4 and B.
the set of points belonging to all the sets 4.

the set of points in 4 but not in B, usually called the difference of the
sets A and B.
the set of points in 4 or B but not both, usually called the symmetric
difference of the sets 4 and B.
x an element of the set A.
f(x) = o(g(x)) as x — 7 if lim f(x)/g(x) = o

z—r

fx) = 0(gx)) as x—> 7if [f(x)/g(x)]| S K < w asx— 1.
f = g f is approximately the same as g.
f(x) =2 g(x) as x — r if lim f(x)/g{x) = 1.

x approaches y from the right.

x mod r = x — mr where mr is the largest multiple of 7 less than or
equal to x.

8\, is equal to one if A = u and zero otherwise.

real part of the complex number a.

the set of « satisfying the condition written in the place indicated by
the three dots.

If « is understood this may simply be written as { - - « }.

All formulas are numbered starting with (1) at the beginning of each section of
each chapter. If a formula is referred to in the same section in which it appears, it
will be referred to by number alone. If the formula appears in the same chapter
but not in the same section, it will be referred to by number and letter of the section
in which it appears. A formula appearing in a different chapter will be referred to
by chapter, letter of section, and number. Suppose we are reading in section b of
Chapter I11. A reference to formula (13) indicates that the formula is listed in the
same chapter and section. Formula (a.13) is in section a of the same chapter.
Formula (IT.a.13) is in section a of Chapter IL.



INTRODUCTION

This text has as its object an introduction to elements of the theory
of random processes. Strictly speaking, only a good background in the
topics usually associated with a course in Advanced Calculus (see, for
example, the text of Apostol [1]) and the elements of matrix algebra is
required although additional background is always helpful. Nonethe-
less a strong effort has been made to keep the required background on
the level specified above. This means that a course based on this book
would be appropriate for a beginning graduate student or an advanced
undergraduate.

Previous knowledge of probability theory is not required since the
discussion starts with the basic notions of probability theory. Chapters
IT and IIT are concerned with discrete probability spaces and elements
of the theory of Markov chains respectively. These two chapters thus
deal with probability theory for finite or countable models. The object
is to present some of the basic ideas and problems of the theory in a
discrete context where difficulties of heavy technique and detailed
measure theoretic discussions do not obscure the ideas and problems.
Further, the hope is that the discussion in the discrete context will
motivate the treatment in the case of continuous state spaces on intui-
tive grounds. Of course, measure theory arises quite naturally in prob-
ability theory, especially so in areas like that of ergodic theory. How-
ever, it is rather extreme and in terms of motivation rather meaningless
to claim that probability theory is just measure theory. The basic
measure theoretic tools required for discussion in continuous state
spaces are introduced in Chapter IV without proof and motivated on
intuitive grounds and by comparison with the discrete case. For other-
wise, we would get lost in the detailed derivations of measure theory.
In fact, throughout the book the presentation is made with the main
object understanding of the material on intuitive grounds. If rigorous
proofs are proper and meaningful with this view in mind they are pre-
sented. In a number of places where such rigorous discussions are too
lengthy and do not give much immediate understanding, they may be
deleted with heuristic discussions given in their place. However, this
will be indicated in the derivations. Attention has been paid to the

3



4 Random Processes

question of motivating the material in terms of the situations in which
the probabilistic problems dealt with typically arise.

The principal topics dealt with in the following chapters are strongly
and weakly stationary processes and Markov processes. The basic result
in the chapter on strongly stationary processes is the ergodic theorem.
The related concepts of ergodicity and mixing are also considered.
Fourier analytic methods are the appropriate tools for weakly sta-
tionary processes. Random harmonic analysis of these processes is con-
sidered at some length in Chapter VII. Associated statistical questions
relating to spectral estimation for Gaussian stationary processes are
also discussed. Chapter VI deals with Markov processes. The two
extremes of jump processes and diffusion processes are dealt with.
The discussion of diffusion processes is heuristic since it was felt that the
detailed sets of estimates involved in a completely rigorous develop-
ment were rather tedious and would not reward the reader with a
degree of understanding consonant with the time required for such a
development.

The topics in the theory of random processes dealt with in the book
are certainly not fully representative of the field as it exists today.
However, it was felt that they are representative of certain broad areas
in terms of content and development. Further, they appeared to be
most appropriate for an introduction. For extended discussion of the
various areas in the field, the reader is referred to Doob’s treatise [12]
and the excellent monographs on specific types of processes and their
applications.

As remarked before, the object of the book is to introduce the reader
as soon as possible to elements of the theory of random processes. This
means that many of the beautiful and detailed results of what might be
called classical probability theory, that is, the study of independent
random variables, are dealt with only insofar as they lead to and moti-
vate study of dependent phenomena. It is hoped that the choice of
models of random phenomena studied will be especially attractive to a
student who is interested in using them in applied work. One hopes
that the book will therefore be appropriate as a text for courses in
mathematics, applied mathematics, and mathematical statistics. Vari-
ous compromises have been made in writing the book with this in mind.
They are not likely to please everyone. The author can only offer his
apologies to those who are disconcerted by some of these compromises.

Problems are provided for the student. Many of the problems may
be nontrivial. They have been chosen so as to lead the student to a
greater understanding of the subject and enable him to realize the
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potential of the ideas developed in the text. There are references to the
work of some of the people that developed the theory discussed. The
references are by no means complete. However, I hope they do give
some sense of historical development of the ideas and techniques as
they exist today. Too often, one gets the impression that a body of
theory has arisen instantaneously since the usual reference is given to
the latest or most current version of that theory. References are also
given to more extended developments of theory and its application.

Some of the topics chosen are reflections of the author’s interest. This
is perhaps especially true of some of the discussion on functions of
Markov chains and the uniform mixing condition in Chapters III and
IX. The section on functions of Markov chains does give much more
insight into the nature of the Markov assumption. The uniform mixing
condition is a natural condition to introduce if one is to have asymptotic
normality of averages of dependent processes.

Chapter VIII has been added because of the general interest in
martingales. Optional sampling and a version of a martingale conver-
gence theorem are discussed. A central limit theorem for martingales
is derived and applied to get a central limit theorem for stationary
processes.



||

BASIC NOTIONS FOR FINITE
AND DENUMERABLE STATE MODELS

a. Events and Probabilities of Events

Let us first discuss the intuitive background of a context in which
the probability notion arises before trying to formally set up a prob-
ability model. Consider an experiment to be performed. Some event 4
may or may not occur as a result of the experiment and we are inter-
ested in a number P(A4) associated with the event A4 that is to be called
the probability of 4 occurring in the experiment. Let us assume that
this experiment can be performed again and again under the same
conditions, each repetition independent of the others. Let N be the
total number of experiments performed and N4 be the number of times
event A occurred in these N performances. If N is large, we would
expect the probability P(4) to be close to N4/N

P(4) =~ N4/N. (1)

In fact, if the experiment could be performed again and again under
these conditions without end, P(4) would be thought of ideally as the
limit of N4/N, as N increases without bound. Of course, all this is an
intuitive discussion but it sets the framework for some of the basic
properties one expects the probability of an event in an experimental
context to have. Thus P(4), the probability of the event 4, ought to be
a real number greater than or equal to zero and less than or equal to 1

0< P(4) <1 )

Now consider an experiment in which two events 4, 4, might occur.

Suppose we wish to consider the event “either 4, or 4, occurs,” which

we shall denote notationally by 4;\J 4,. Suppose the two events are

disjoint in the following sense: the event 4, can occur and the event A,

can occur but both cannot occur simultaneously. Now consider repeat-

ing the same experiment independently a large number of times, say N.
6



Finite and Denumerable State Models 7
Then intuitively

NA!/N) P(A2)zNAz/N’

P(4,)
9) = Naua,/N. )

P(4,\U 4

R

But N4,u4,, the number of times “A4; or 4, occurs” in the experiment
is equal to N4, + Na, Thusif 4, 4, are disjoint we ought to have
P(4,\J 42) = P(41) + P(42). C))
By extension, if a finite number of events 4y, . . . , 4, can occur in an
n
experiment, let 4;\U 4,\J - . . U 4, = U 4; denote the event
i=1
“either 4; or Az or . . . or 4, occurs in the experiment.” If the events
are disjoint, that is, no two can occur simultaneously, we anticipate
as before that
n n
P(\J 4) = Z P(4). (5)
i=1 i=1
Of course, if the events are not disjoint such an additivity relation will
not hold. The notation \U 4; need not be restricted to a finite collection
of events {4;}. It will also be used for infinite collections of events.
Relation (5) would be expected to hold for a denumerable or count-
able collection 4,, 4;, . . . of disjoint events.

There is an interesting but trivial event @, the event ‘“‘something
occurs.”” It is clear that Ng = N and hence

PQ) = 1. (6)

With each event A there is associated an event 4, “A does not oc-
cur.” We shall refer to this event as' the complement of A. Since
Nz = N — N4 it is natural to set

P(A) =1 — P(4). ™

Notice that the complement of £, ¢ = & (‘““nothing occurs’) has prob-
ability zero
P(¢) =1—PQ) =0. 8)

Let us now consider what is implicit in our discussion above. A
family of events is associated with the experiment. The events represent
classes of outcomes of the experiment. Call the family of events 4 asso-
ciated with the experiment §. The family of events § has the following
properties:

7 1. If the events A1, A2eF then the event A3 \J Aq, “‘either A, or A,
occurs,’ s an element of .
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2. The event Q, “something occurs” is an element of F.
3. Given any event AeF, the complementary event 4, “A does not occur,”
is an element of 5.

Further, a function of the events 4¢3, P(4), is given with the following
properties:

2 1.0< P4 <1
2. P(Q) =1
3. P(4,\J 4y) = P(4,) + P(4y) if Ay, As5 are disjoint.

Notice that the relation
P(A) =1 — P(4) )

follows from 2.2 and 2.3.

In the case of an experiment with a finite number of possible ele-
mentary outcomes we can distinguish between compound and simple
events associated with the experiment. A simple event is just the speci-
fication of a particular elementary outcome. A compound event is the
specification that one of several elementary outcomes has been realized
in the experiment. Of course, the simple events are disjoint and can be
thought of as sets, each consists of one point, the particular elementary
outcome each corresponds to. The compound events are then sets each
consisting of several points, the distinct elementary outcomes they
encompass. In the probability literature the simple events are at times
referred to as the “sample points” of the probability model at hand.
The probabilities of the simple events, let us say Ey, Es, . . . , E,, are
assumed to be specified. Clearly

0< PE) <1 (10)

and since the simple events are disjoint and exhaustive (in that they
account for all possible elementary outcomes of the experiment)

2 P(E) = 1. (11
i=1
The probability of any event 4 by 2.3 is
P(4) = T P(E). (12)
E.CA

The events A of § are the events obtained by considering all possible
collections of elementary occurrences. Thus the number of distinct
events 4 of & are 2» altogether. A collection of events (or sets) satisfying
conditions 7.1-7.3 is commonly called a field. In the case of experiments
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with an infinite number of possible elementary outcomes one usually
wishes to strengthen assumption 7 in the following way:

1 1. Given any denumerable (finite or infinite) collection of events A,
Agy . .. of F AU 4,V - . . =\U 4; “either 4, or 4, or .
occurs” is an element of §. Such a collection of events or sets with prop-
erty 7.1 replaced by 7.1 is called a sigma-field. In dealing with P as a
function of events 4 of a o-field ¥, assumption 2.3 is strengthened and
replaced by

23 P(JA) =S P(A)if Ay, Aoy . . . ,eF (13)

is a denumerable collection of disjoint events. This property is commonly
referred to as countable additivity of the P function.

By introducing ‘“‘sample points” we are able to speak alternatively of
events or sets. In fact disjointness of events means disjointness of the
corresponding events viewed as collections of elementary outcomes of
the experiment. Generally, it will be quite convenient to think of
events as sets and use all the results on set operations which have com-
plete counterparts in operations on events. In fact the \U operation on
events is simply set addition for the events regarded as sets. Similarly
complementation of an event amounts to set complementation for the
event regarded as a set.

It is very important to note that our basic notion is that of an experi-
ment with outcomes subject to random fluctuation. A family or field
of events representing the possible outcomes of the experiment is con-
sidered with a numerical value attached to each event. This numerical
value or probability associated with the event represents the relative
frequency with which one expects the event to occur in a large number
of independent repetitions of the experiment. This mode of thought is
very much due to von Mises [57].

Let us now illustrate the basic notions introduced in terms of a
simple experiment. The experiment considered is the toss of a die.
There are six elementary outcomes of the experiment corresponding
to the six faces of the die that may face up after a toss. Let E; represent
the elementary event “; faces up on the die after the toss.” Let

0<pi=PE)<1 (14)

be the probability of E; The probability of the compound event
A = {an even number faces up} is easily seen to be

P(A) = ps + ps + po. (15)
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The die is said to be a “fair” die if

p1=ﬁ2= « o . =P6=}6'

Another event or set operation that is of importance can be simply
derived from those already considered. Given two events A;, As€F,
consider the derived event A; M A, “both A; and 4. occur.” It is
clear that

AlAz = A1 f—\ Az = (/il U /iz) (16)

b. Conditional Probability, Independence, and
Random Variables

A natural and important question is what is to be meant by the
conditional probability of an event A4; given that another event 4,
has occurred. The events 4, 4, are, of course, possible outcomes of a
given experiment. Let us again think in terms of a large number N
of independent repetitions of the experiment. Let N4, be the number
of times A4; has occurred and N4,~4, the number of times 4; and 4,
have simultaneously occurred in the N repetitions of the experiment.
It is quite natural to think of the conditional probability of 4; given A4,
P(4,]4;), as very close to

Nana, /Na, :

Nana,/Na, =

if NV is large. This motivates the definition of the conditional probability
P(4,4,) by
P(4,|4;) = P(4; M A3)/P(4,) 2)

which is well defined as long as P(45) > 0. If P(4;) = 0, P(4,|4;) can
be taken as any number between zero and one. Notice that with
this definition of conditional probability, given any BeF (the field of
events of the experiment) for which P(B) > 0, the conditional proba-
bility P(4|B), Ae5F, as a function of AeF is a well-defined probability
function satisfying 2.1-2.3. It is very easy to verify that

2 P(A|E)P(E) = P(4) (3

where the E;’s are the simple events of the probability field . A similar
relation will be used later on to define conditional probabilities in the
case of experiments with more complicated spaces of sample points
(sample spaces).
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The term independence has been used repeatedly in an intuitive
and unspecified sense. Let us now consider what we ought to mean by
the independence of two events A4;, 4,. Suppose we know that 4, has
occurred. It is then clear that the relevant probability statement about
A, is a statement in terms of the conditional probability of 4, given 4.
It would be natural to say that 4, is independent of 4, if the conditional
probability of 4; given 4, is equal to the probability of 4,

P(4,]|4,;) = P(4y), 4)

that is, the knowledge that 4, has occurred does not change our expec-
tation of the frequency with which 4, should occur. Now

P(A:|Az) = P(A1 M A2)/P(42) = P(41)
so that
P(4; M Ay) = P(A,)P(42). ©)

Note that the argument phrased in terms of P(4,|4;) would lead to the
same conclusion, namely relation (5). Suppose a denumerable collec-

tion (finite or infinite) of events 4, 42 . . . is considered. We shall
say that the collection of events is a collection of independent events if
every finite subcollection ofevents 4;,, . . . , 4, 1 <k < - -+ <km,
satisfies the product relation
m
P(AnAr, - - - Ar) = [] P4w).
i=1

It is easy to give an example of a collection of events that are pair-
wise independent but not jointly independent. Let § be a field of sets
with four distinct simple events E,, E,, E3, E,

PE)=1Y, i=1,...,4 6)
Let the compound events 4; 7 = 1, 2, 3 be given by
A] = El U Ez
Ay, = E;\J Eg
As = El U E4.
Then
PA4) =13 i=1,2,3 )
while
P(4:4,) = P(A,4;) = P(4:4;) = P(Ey) = 4. (8)

The events 4; are clearly pairwise independent. Nonetheless

P(4:4:45) = P(E1) = 14 7 P(4:)P(45) P(4s). ©
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Thus far independence of events within a collection has been discussed.

Suppose we have several collections of events C; = {4(®; i =1,

com), Co={AP;i=1, ... ,m}, ..., Ch={4m;i=1,

. ., nm}. What shall we mean by the independence of these collec-

tions of events? It is natural to call the collections Cy, . . . , C,, inde-

pendent if every m-tuple of events A", . . . , A!™ consisting of one
event from each collection is a collection of independent events.

This discussion of independence of collections of events can now be
applied in defining what we ought to mean by independence of experi-
ments. Suppose we have m experiments with corresponding fields
1, . . . , Fn Let the corresponding collections of simple events be

{EM;i=1,...,m}, ..., Emi=1,...,n8.}.

Now the m experiments can be considered jointly as one global experi-
ment in which case the global experiment has a field of events generated
by the following collection of simple events

Ei ... .i,=EPED - - - E™ (10)

1reees

and the m experiments are said to be independent if

m
P(E,,...;) = P(EPE® - - - Em) = [ PEP). (11)

k=1
Consider this in the case of a simple coin tossing experiment. The coin
has two faces, head and tail, denoted by 1 and O respectively. The
probability of a head in a coin toss is p, 0 < p < 1. Suppose the coin
is tossed m times, each time independent of the others. Each coin toss
can be regarded as an experiment, in which case we have m independent
experiments. If the m experiments are jointly regarded as one experi-

ment, each simple event can be represented as

Ei;.n..‘im = {(il, “ .. ,im)}, il, “ e ey i,,, = 0, 1. (12)
Thus each simple event consists of one point, an m-vector with coor-

dinates 0 or 1. Each such point is a sample point. Since the coin tosses
are independent

m
P(E;, ....) =P, ... o} = ﬂ P(EPp) = pFisgm—Tis (13)
k=1
where ¢ = 1 — p. If the coin is fair, that is, p = ¢ = 14, the probabil-
ities of simple events are all equal to 147,
We can regard the models of experiments dealt with as triplets of
entities (2,5,P) where Q is a space of points (all the sample points),
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F the field (if there are a finite number of sample points) or sigma-field
(if there are a denumerably infinite number of sample points) of
events generated by the sample points, and P is the probability func-
tion defined on the events of §. Such a model of an experiment is called
a probability space. Usually the sample points are written as w. A numeri-
cal valued function X(w) on the space Q of sample points is called a
random variable. Thus X(w) represents an observable in the experi-
ment. In the case of the m successive independent coin tossings dis-
cussed above, the number of heads obtained would be a random
variable. A random variable X(w) generates a field (sigma-field) Fx of
events generated by events of the form {w|X(w) = a} where a is any
number. The field consists of events which are unions of events of
the form {w|X(w) = a}. The probability function P on the events of
this field Fx generated by X(w) is called the probability distribution of X ().
Quite often the explicit indication of X(w) as a function of w is
omitted and the random variable X(w) is written as X. We shall
typically follow this convention unless there is an explicit need for

clarification. Suppose we have n random variables Xi(w), . . . , Xa.(w)
defined on a probability space. The random variables X3, . . . , X,
are said to be independent if the fields (sigma-fields) Fx,, . . . , Fx, gen-

erated by them are independent.

The discussion of a probability space and of random variables on
the space is essentially the same in the case of a sample space with a
nondenumerable number of sample points. The discussion must, how-
ever, be carried out much more carefully due to the greater complexity
of the context at hand. We leave such a discussion for Chapter IV.

c. The Binomial and Poisson Distributions

Two classical probability distributions are discussed in this section.
The first distribution, the binomial, is simply derived in the context of
the coin tossing experiment discussed in the previous section. Consider
the random variable X = {number of heads in m successive independent
coin tossings}. Each sample point (i1, . . . ,#m), & = 0, 1, of the prob-
ability space corresponding to an outcome with r heads and m — 7
tails, 0 < 7 < m, has probability p7¢™" where ¢ =1 — p, 0 < p < 1.
But there are precisely factorial coefficient

(':) - ;T(Fm—"?' (1)
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such distinct sample points with r heads and m — r tails. Therefore the
probability distribution of X is given by

PX=r) = (’:l)p'q’”" r=0,1,...,m 2)
Of course,
2 P(X =) = 2 ("’) e =1 3)
r=0 r=0

and we recognize the probabilities as the terms in the binomial

expansion
¢+ om = 2 (”‘) e, 0)

r=0

an obvious motivation for the name binomial distribution.
The Poisson distribution is obtained from the binomial distribution
by a limiting argument. Set mp = XA > 0 with A constant and consider

lim P(X = 7). (5)
()

r m m

Now

PX=r1)

It

]
. . L ©
(=R (=R (-5 03)
r: m m m m
-— )‘—r e\
r!
as m — o. A random variable ¥ with probability distribution
AT
P(Y=r)=;'—ex @)

is said to have a Poisson distribution. It is clear that we would expect
this distribution to be a good approximation when the experiment can
be regarded as a succession of many independent simple binomial
trials (a simple binomial trial is an experiment with a simple success

or failure outcome), the probability of success p = %is small, and the

probability distribution of the total number of successes is desired.
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Such is the case when dealing with a Geiger counter for radioactive
material. For if we divide the time period of observation into many
small equal subintervals, the over-all experiment can then be regarded
as an ensemble of independent binomial experiments, one correspond-
ing to each subinterval. In each subinterval there is a large probability

1 - %that there will be no scintillation and a small probability%

that there will be precisely one scintillation.

d. Expectation and Variance of Random Variables
(Moments)

Let X be a random variable on a probability space with probability
distribution
P(X=a,~)=p,- i=1,2,.... 1)

The expectation of X, that is, EX, will be defined for random variables X
on the probability space with

= adps @

finite. As we shall see, £ can be regarded as a linear operator acting
on these random variables. The expectation EX is defined as

EX = 3 aps 3)

i=1

Thus EX is just the mean or first moment of the probability distribution
of X. More generally, n-th order moments,n = 0,1, . . . , are defined
for random variables X with

él ladrp: < . )
The n-th order moment of X is defined as the expectation of X», EX",

EX» = 151 arp. (5)
The n-th order absolute moment of X is

EIX] = 3 ledp: ©
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The first moment or mean of X, m = EX, is the center of mass of
the probability distribution of X, where probability is regarded as
mass. Let X, ¥ be two random variables with well-defined expecta-
tions, EX, EY, and a, 8 any two numbers. Let the values assumed by
X, Y with positive probability be a;, b; respectively. Then

E(aX + ﬂY) = 2 (aa; + Bbj)P(X = ai, Y = j)
W
=« 2 a,'P(X = ai) + ﬁEb,P(Y - b,) (7)
= aEX + BEY.

Thus E is a linear operator on the random variables X for which EX is
well defined. Of course, this can be extended to any finite number of
such random variables X3, . . . , X, so that we have

E(Z aX) = 3 «EX. ®)
1=1 g=1

It is easy to give an example of a random variable for which the
expectation is undefined. Simply take a; = 7,7 = 1, 2, . . . and set

pi=Ki%i=172, ...

K= (2 i )
i=1
Since
Sipi= 3 %K= (10)
i=1 1=1

EX is not well defined. This is due to the fact that too much probability
mass has been put in the tail (large values of X) of the probability
distribution of X.

Now consider two independent random variables X,Y whose expecta-
tions are well defined. As before let the values assumed by XY with
positive probability be a;, &; respectively. Then the expectation of the
product XY is given by

EXY = Ea,b,P(X== ai, Y = j)
LY
.2 aib;P(X = a,)P(Y = ,’) (11)
I
= E(X)E(Y).

]

Thus the expectation operator is multiplicative when dealing with
products of independent random variables. If X,Y are independent
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and f,g are any two functions, f(X),g(Y) are independent. The argu-
ment given above then indicates that

E(f(X)g(Y)) = Ef(X)Eg(Y) (12)

if Ef(X),Eg(Y) are well defined. This basic and important property
will be used often when dealing with independent random variables.

A measure of concentration of the probability mass of a random
variable X about its mean is given by the central moment

o= EX — m)? = E'(./Y2 — 2mX + m? (13)
= EX? — m?,

commonly called the variance of the probability distribution. The
variance o*(X) = o¢? is well defined as long as EX? is. The central
moments are moments about the mean of the probability distribution.
Just as in the case of noncentral moments, one can consider central
moments (if any exist) of all non-negative integral orders

EX—mrn=0,1,2, .. .. (14)
It is clear that
EX—-m®=El =1
EX—m) =0 (15)
E(X — m)® = o?

There is a very interesting additive property of the variance in the

case of independent random variables. Let X3, . . . , X, be independ-
ent random variables with finite second moments. Set
m; = EX{, 0’? = 62(Xi), i = 1, PR (16)

Then the variance of the sum

o2 (% X)=E ('z;; (X; — m))?
= 3 E[X — m)(X; — m)]
"3"‘ (17)
= 2 o+ 2 EXi — m)(X; — my)
i=1 1 %)
=3
1=l

by the independence of the random variables.
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Let us now consider computing the first few moments of the
binomial and Poisson distributions. First of all, by making use of (6)
it is seen that all moments of these distributions are well defined. The
moments will be evaluated by making use of a tool that is very valuable
when dealing with probability distributions concentrated on the non-
negative integers. A transform of the probability distribution commonly
called the generating function of the distribution is introduced as follows

2(5) = 3 pust = E(sY). (18)
k=0

The generating function g(s) is the formal power scries with coefficient
of s* the probability pi. This power series is well defined on the closed
interval |s] <1 and infinitely diffcrentiable on the open interval
|s] <1 since

pr =0, Zpr = 1. (19)

Here all the moments EX™ are absolute moments since the probability
mass is concentrated on the non-negative integers. Certain moments,
called factorial moments, are very closcly related to the ordinary
moments and can readily be derived from the generating function by
differentiation. The r-th factorial moment of X

EXX—-1) - X—=r+1D] r=1,2,... (20)

is well defined if and only if the r-th moment of X, EX", is well defined.
Notice that

E[X(X —1) - - - (X—r+1)]=2k(k—1) c k=14 D
k=0 (1)

o0

= lim k(k—=1) - - - (k—r+ Dppst = lim (—j—rg(s).
51— s—>1— a5
k=0
Here s— 1 — indicates that s approaches 1 from the left.
Let us now consider computing the moments of the binomial and

Poisson distribution. First consider the binomial distribution. Its

generating function
- TN Lkt o
g(s) E (k)l' g *s (22)

k=0

= (ps + ¢
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The r-th derivative

a’r
e =a =1 - =+ D5+ 9
so that

sli,tln_g;g(s) =an—1) - (n—r+1)p.

The first and second moments are given by

EX =np
EX? = E[X(X — 1)] + EX
n(n — 1)p* + np.
The variance of the distribution
¢ = EX? — (EX)?
=n(n — 1)p*> + np — n®?
= npq.

The generating function of the Poisson distribution

©

G
g(s) = i Ak = D,
k=0

The r-th factorial moment

dr
Hm == 6D = )\,
s—1— as”

The first and second moments

EX =2\
EX? =22+
so that the variance
¢ =\

is equal to the mean.

19

(23)

@24

25)

26)

@7

(28)

(29)

(30)

Let X, Y be two independent non-negative integer-valued random

variables with probability distributions

PIX=k=¢pr, PY=Fk=gq

(31

respectively, where £ = 0, 1, 2, . . . . The generating function A(s)
of the sum X + Y of the two random variables is readily given in
terms of the generating functions f(s), g(s) of X and Y respectively. For

h(s) = E(s%+Y) = E(¥)E(sY) = f(5)g(s).

(32)
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The probability distribution of X 4 Y is given in terms of an operation
on the p and ¢ sequences commonly referred to as the convolution
operation

k
PIX+Y =14k = Z pidn-i = (O*. (33)
i-

e. The Weak Law of Large Numbers and the
Central Limit Theorem

A very simple limit argument was used in section ¢ to derive the
Poisson distribution. This was a simple example of a limit theorem.
In fact much of the classical literature in probability theory (which is
primarily concerned with a study of independent random variables) is
centered about such limit theorems. The weak law of large numbers
and the central limit theorem are further examples of such limit
theorems.

A simple but basic inequality due to Chebyshev is a necessary
preliminary to our proof of the weak law of large numbers. Let X
be a random variable with finite second moment. Then, given any positive number
g(>0),

P(|X| > &) < EX?/e2 €))

The proof is rather straightforward. For

EX*= 3 aips
=1
|a~|2> alp; 2

> 3 p=eP(X| > e).
lai] 2e

v

This inequality gives us a crude but interesting estimate of the prob-
ability mass in the tail of the probability distribution in terms of the
second moment of the distribution.

The weak law of large numbers follows. Let Xy, . . . , X, be inde-
pendent random variables with the same probability distribution (identically
distributed) and finite second moment. Set

A ©)

m=EX; j=1,...,n
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Then, given any € > 0,

§3—m!2€)-—+0 )

"(
n
as n — o, This states that for any small fixed positive number €, there
is an n large enough so that most of the probability mass of the dis-
tribution of S,/ falls in the closed interval |x — m| < €. The random
variables X, . . ., X, can be regarded as the observations in n
independent repetitions of the same experiment. In that case S,/n is
simply the sample mean and the weak law of large numbers states that
the mass of the probability distribution of the sample mean concen-
trates about the population mean m = EX as n — . Intuitively, this
motivates taking the sample mean as an estimate of the population
mean when the sample size (number of experiments) is large. As we
shall later see, it is essential that there be some moment condition such
as that given in the statement of the weak law, that is, a condition on
the amount of mass in the tail of the probability distribution of X.
The law is called a weak law of large numbers because (4) amounts
to a weak sort of convergence of S,/n to m. This point will be clarified
later on in Chapter IV.

Now consider the proof of the law of large numbers. Let o2 be the
common variance of the random variables X;. Note that

I n = \ —
SN R
<E[Y i=min| fe= 2

i=1

(%)

by the Chebyshev inequality and the independence of the random
variables X;. On letting n — o, we obtain the desired result.

We give a simple and exceedingly clever proof of the Weierstrass
approximation theorem due to S. Bernstein [3]. This interpolation is
appropriate because it indicates how probabilistic ideas at times lead
to new approaches to nonprobabilistic problems. Consider the con-
tinuous functions on any closed finite interval. For convenience take the
interval as [0,1]. The Weierstrass approximation theorem states that
any given continuous function on [0,1] can be approximated arbitrarily. well
uniformly on [0,1] by a polynomial of sufficiently high degree. Serge Bernstein
gave an explicit construction by means of his ‘“‘Bernstein polynomials.”
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Let f(x), 0 < x £ 1, be the given continuous function. Let ¥ be a
binomial variable of sample size n, that is, with n coin tosses where the
probability of success in one toss is x. Consider the derived random
variable f(Y/n). We might regard f(Y/n) as an estimate of f(x).
This estimate is equal to f(k/n), £ = 0,1, . . ., n, with probability

(2) x*(1 — x)»*. As n — o, by the weak law of large numbers, ¥/n

approaches x in probability and hence by the continuity of the function
f, f(¥/n) approaches f(x) in probability. However, we are not really
interested in f(¥/n) but rather its mean value Ef(Y /n). The expectation

n

Ef(¥/n) = 2 f(k/n) (Z) (1 = )" = pu(x) ©)

k=0

is a polynomial of degree n in x which we shall call the Bernstein
polynomial of degree n corresponding to f(x). A simple argument using
the law of large numbers will show that p.(x) approaches f(x) uni-
formly as n — oo. Since f(x) is continuous on the closed interval [0,1], it
is uniformly continuous on [0,1]. Given any € > 0, there isa §(g) > 0
such that for any x, ye[0,1] with |x — y| < 8(¢), |f(x) — f(»)| < &. Con-
sider any € > 0. We shall show that for sufficiently large n

[pa(x) — f0)| < € 7

for all x. Note that
-
n
< o

Set n = 148(¢/2). Let M/2 be an absolute bound for f(x) on the
interval {0,1]. Then

lon(x) = f(0] = |E(f(¥/n) — f())]

< MP[|Y/n — x| > 148(e/2)] + €/2 )]
M
< 75%(e/2) +¢g/2<¢

if n is taken greater than 2M/ (g §%*(¢/2)).

The proof of the central limit theorem is somewhat more difficult.
As before Xy, . . . , X, are assumed to be independent, identically distrib-
uted random variables with fiite second moment. Let m = EX, o* > 0, be
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the common mean and variance. The central limit theorem states that

lim P(—\—&/j [%-1 — m] < x) = d(x) = /x \/12_3—%2 du. (10)

It is not surprising that the proof is more difficult. This result tells us
much more than the law of large numbers since it indicates the rate
at which the probability mass of the distribution of §,/n concentrates
about thc mean value m as n — . It is enough to prove the theorem
for random variables with mean zero and variance one since

n

- z X — m)/a (1)

i=1

S, — nm
o

is a sum of independent identically distributed random variables
(X5 — m)/o (12)

with mean zero and variance one.

The proof of the central limit theorem given is due to Petrovsky
and Kolmogorov (see [40]). Let the X;,7 = 1, . . . , n, be independent
identically distributed random variables with mean zero and variance
one. Let

p; = P(X = a,) j=12, ... 13
Sp =1 (13)
so that the ¢;’s are the points on which the probability mass of the X\’s

are located. Now
PX<x)= Z p;=F(x) (14)
ailzr

is a nondecreasing function of x called the distribution function of the
random variable X. Let us list the properties of a distribution function
F(x). We have just noted that F(x) is nondecreasing. Further

lim F(x) = lim P(X<x)=0

T—r — z— —

lim F(x) = P(X < ®) = 1. (15)

The distribution functions are also continuous to the right, that is,

lim+ F(y) = F(x + 0) = F(x) (16)

where y — x-} indicates that y approaches x from the right. Thus,
distribution functions F are nondecreasing functions with total increase
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one and lim F(x) = 0. The distribution functions we consider are

PR
jump functions (they increase only by jumps) since they correspond to
random variables and only discrete valued random variables have been
considered thus far. However, we will call any function satisfying the
above conditions a distribution function even though it does not corre-
spond to a discrete valued random variable. Later it will be shown that
such functions can be made to correspond to random variables with a
continuous (not necessarily discrete) value range. The reason for
introducing such an enlarged notion of distribution function now is
due to the fact that we have to deal with ®(x) which is a distribution
function in this enlarged sense but not in the original restricted sense.
Since the mean and second moment of a discrete valued random vari-
able X are given in terms of its distribution function as

[¢dF, [ dF (17)

respectively, we shall gencrally refer to these as the mean and second

moment (variance if the mean is zero) of the distribution function F.

Thus the mean and variance of ®(x) are zero and one respectively.
The distribution function F,(x) of X//7 is given by

Fo(x) = P(X/Vn < %) = F(v/n ). (18)

Let Up ,(x) be the distribution function of

k
Z X,/ (19)

i=1

Up (%) = P(kz X;/A/n < x)

i=1

1 ij=1

_ ZP<2X]~/\/5 <x-— \/7_1) P(X, = )

Now

(20)

=
= z Uk—l,n(x - 57-! bi

- f Unorn(x — £) dFn(®)
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for 1 <k < n. Now U,(x) = U, ,(x) is the distribution function of

$ x/vn (21)
i=
and our object is to show that

lim U,(x) = &(x). (22)

n— %

Notice that ®(x/+/%) is a solution of the ‘“heat equation” or ‘“‘diffusion
equation”
9 14
% " aa @3)

in the half-plane ¢ > 0. The ““upper” function

V(ix,t) = ®(x/\1) + ¢ ¢ (24)
(¢ > 0 a fixed positive number) plays a basic role in the proof. The
function V satisfies the equation
o _ 127
a2 0x°
Two intermediate results or lemmas will be required. The basic
idea of the proof is to replace each of the n distribution functions F,.(x)
by the distribution function ®(\/7 x). The object is to show that the
error made in each such replacement is small enough so that the over-all
error made is negligible. The lemmas are required in getting sufficiently
good estimates of the error.
Lemma 1: Given any & > O there is an n (depending on 8, €) sufficiently
large so that

+ & (25)

V(x, ‘ + %) > / V(x — & t) dFW(£) 26)
in the whole half-plane t > 6.
Now
2
V=60 = Vo) = £ 00 +2 8000 4ot (20)
where

2 2
petd =58 | S5 =m0 = Tln Lo <o <, @)

by the law of the mean. Since
2
im0 =1 7= [rarw =05 =1 = [earn® @
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we have
[ve-eoan@=veo+ 35547 o
where
J = [p(x,£¢) dFa(E). (31)
Now
lp(xE0] < £/8 (32)

for t > & since the absolute value of 32V/dx? is bounded by 1/24 in the
half-plane ¢ > 6. On the other hand

lo(x,8,0)] < |£]*/8% (33)

when ¢ > § by a corresponding bound on 8*V/dx%. Making use of the
last inequality, we see that

lo(nE0] < 5 & (34)

in¢> 5 when |£| < r = < 6% It then follows that

3
] < f (x| dFu(8) + /'muxwtwa@>

l§1<r E]>7

<§ [ eamw+; [ vae (39)
|¢I<7 {&1>7

€1 1

<3t m

where
x=n/~?ﬁx9= /'sWHa (36)
(> S/

For n sufficiently large A < € §/3 and hence

2¢
VI<3a
Since V(x,t) satisfies equation (25) it follows that
19V 1
[re—eoar® <veo+ 15 -5L oD

The relation

V(at+%)—tmw)+laV+ 1[“V

53 aﬁ]w ,0<0<1, (38)
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implies that

1 1oV 1
since 7l < % when ¢ > 8. For sufficiently large  therefore
1 19V el
V(X, t + ;) > V(x,t) + ;'(—%— - 3;1_. (40)

Lemma 1 follows from relations (37) and (40).
Lemma 2: Let Gy, Gy be two distribution functions with zero mean and
variances less than 8. Then

Gl(x) — Gi(x + 2a) < B/a® (41)

for all x and all & > 0.
This lemma follows readily by considering two cases and an applica-
tion of Chebyshev’s inequality. If x < —a

Gl(x) < 01(—0‘) < 5/012 (42)
and hence
Gi(x) — Ga(x + 2a) < B/ (43)
Ifx> —a
Ga(x + 2a) = Go(a) 2 1 — B/a? (44)
and we again have
Gi(x) — Gao(x + 2a) < 1 — Go(x + 2a) < B/at. (45)

The two lemmas are now applied to complete the proof of the
central limit theorem. Take & a fixed number, 0 < § < 1. For some
valueofs,s =1, ... ,n

8 < s/n < 28.
The distribution function U, ,(x) has mean zero and variance f—; < 28.

Now & (x / ,\/%) has the same property. By Lemma 2 for all x and

a>0
U,ulx) — ® (" +_2“> < 28 (46)

s a?
n
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and thus

Ui, n(x) — V(x + 2¢, %) < g (47)

By Lemma 1, since i— > 3,

(x+za,) / <x+2a—£, )m(s) (48)

for £ > s. Set
Wi(x) = Usn(x) — V(x + 2a, g) (49)
Using (20) and (48), we obtain
Wi(x) < [Wia(x — &) dF,(8). (50)

Let pr be the least upper bound of Wi(x). Since [dF, =1, pr <
pr—1(k > s) and hence u, < g,. Thus
28

Un(x) = V(x + 20, 1) = Up(x) — (x4 20) —€ S p < (51)
or

o420 25
Un(x) < ®(x) + —o \/_ / Wdu+ e+ o

(52)
< ®(x) + ~\/—— +€ +
With an appropriate choice of a, &
U,(x) < ®(x) + 2¢. (53)

A completely analogous argument with the “lower” function ®(x/ V')
— & ¢ leads us to
Un(x) > ®(x) — 2¢ (54)

for sufficiently large n. Since € is an arbitrary positive number, the
proof of the central limit theorem is complete.

The central limit theorem is often invoked in the theory of errors.
Assume that a series of independent experiments to measure the
physical constant m is to be set up. The random variables X3, . . .,
X, are the measurements of the constant m in the 2 experiments. There
will generally be an error X; — m in the i-th experiment due to reading
error, imperfections in the measuring instrument,and other such effects.
Assuming not too much mass in the tail of the probability distribution
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of the X’s (existence of a second moment), it is reasonable to take the

n
.1 . .
mean of the observations - z X; as an estimate of the physical constant
1

m. Of course, it is assumed that the experiments are not biased, that
is, the mean of the probability distribution of X is equal to m. Then the
central limit theorem provides an approximation for the probability
distribution of the sample mean for n large.

f. Entropy of an Experiment

Consider an experiment @ with a finite number of elementary out-
comes Ay, . . ., A, and corresponding probabilities of occurrence
pi>0,2=1, ... ,n Zp; = 1. We should like to associate a number
H(@®) with the experiment @ that will be a reasonable measure of the
uncertainty associated with @. Notice that H(®) could alternatively
be written as a function of the » probabilities p,, H(p1, . . . ,pa), when
@ has n elementary outcomes. We shall call the number H(®) the
entropy of the experiment Q.

Suppose two experiments &, ® with elementary outcomes 4,
i=1,...,nB,7=1, ... ,mrespectively are considered jointly.
Assume that the form of H{®) as a function of the probabilities p; is
known. It is then natural to take the conditional entropy of the
experiment @ given outcome B; of experiment ®, H(Q|B;), as the func-
tion of the conditional probabilities P(4,|B;) i = 1, . . . , nof thesame
form. The conditional entropy of the experiment @ given the experi-
ment ®, Hg(Q®), is naturally taken as

He(@) = 3 H(GIB)P(B). (1)

Let us now consider properties that it might be reasonable to require
of the entropy of an experiment. As already remarked,

H(@) = H(py, . - . »pn)

is a function of the probabilities p; of the elementary outcomes of Q.
Our first assumption is that H(py, . . . , pa) is a continuous and sym-
metric function of py, . . . , pa. Further, one feels that H(p1, . . . ,pu)

. 1 . .
should take its largest value when py = - - « = pn = o since this corre-
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sponds to the experiment @ with » elementary outcomes that has the
highest degree of randomness. The next property to be required is an
additivity property. Let @, & be two experiments with a finite number
of elementary outcomes 4;, B;. Let 8V @ denote the joint experiment
with elementary outcomes B;4; and H(® V @) the entropy of that joint
experiment. We ask that the entropy of @ and & jointly be equal to the sum
of the entropy of @ and the conditional entropy of ® given G

H(®VGQ) = H®) + Hy(®). 2)
The last condition is a consistency condition, namely,

H(py, . . . opu) = H(py, . . . ,pa,0). 3)

Here, the entropies of two experiments, one with zn outcomes and the
other with » + 1 outcomes, have been equated. However, it is clear
they are the same experiment since the n -+ 1% outcome has proba-
bility zero.

We first consider L(n) = H (71;, cee %) and show that L(n) = A

log n with X a positive constant. By the second and fourth assumptions
s =)=l o)
n n n n
1

1
—<-H<7_'Z_:F—l_, R 7ﬁ‘:1')=L(ﬂ+1).

Thus L(n) is a nondecreasing function of n. Let m, r be positive integers.

“

Take m mutually independent experiments Sy, . . . , S, each with 7
equally likely elementary outcomes so that H(S;) = H (-rl—, ey ;—)
= L(r), k=1, ..., m The additivity of the entropy function
implies that

HSV - - - VS = T H(S) = mL(). )

1

But SV - - - VS, has /™ elementary equally likely events and
therefore

H(S,V - - - VS,) = L™ = mL(). (6)

Assume that the function L is not identically zero. Consider arbitrary
fixed integers s, » > 0. Take 7 an integer greater than one with L(r) 5 0.
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Then an integer m can be determined such that

m S s S rm+l

mlogr <nlogs < (m+ 1) logr )
m . log s <m +1

n " logr— n

By the monotonicity of L we have

L™ < L(s™) < L)

mL(r) < nL(s) < (m + 1) L(r) (8)
m _L(s) _m+1
A IO S a
Therefore
L(s) _logs 1
L) logr Sy ©)
On letting n — « we see that
L) _logs
L() = logr (1o

But this implies that L(n) = X log n with A > 0 because L is non-
decreasing.

The form of H has been obtained when p; = - - - = p, = ’l-l Let
us now consider the form of H for rational p; > 0, Zp;, = 1. Take
pi=gfg,i=1,...,n8>0, %gi = g with the g; integers. Con-

1
sider an experiment ® with g equally likely elementary outcomes
By, . . ., B, Let @ be the cruder experiment with n elementary out-
comes Ay, . . ., 4,
[ g1t - tgn
A1=UB; ... ,4, = U B,. 11)
1 g1+ -+ Fonatl

Notice that P(4x) = gi/g = pr and the conditional probability of an
event B; given A4; is 1/g; if B; is a subset of A4, and zero otherwise.
Therefore

fI

Hy(®) él pH(®|Ar) = A kgl pr log gk

(12)

]

A kzlpk log gpr = Nlog g + A kEI P log pr.
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Now the experiment & V @ has g elementary outcomes, each occurring
with probability 1/g, the remaining elementary outcomes all having
probability zero. Thus H(® V @) = X log g. Using the additivity
property of the entropy

H(@) = H® V @) — Hy(®) (13)
we find that

H(®@) = —\ kzl P log pr. (14)
Since the entropy H(ps, . . . ,pn) is assumed to be a continuous func-
tion of p1, . . . , pn, this representation is valid for real py, . . . , pa.

g. Problems

1. Show that M 4; = U A,

i=1 i=1

and V) A4; = A 4.

i=1 t=1

Consider the two results above for infinite collections of sets.
2. Given 4; and A, show that
1 — P(d;) — P(4d,) < P(4:4:) < 1

and
P(AlAz) =1- P(“Il) - P(Zz) + P(“flf-le

Extend the results given above to collections of more than two sets.
3. Derive P(A]I[Tz) = P(Al), P(JllAz) = P(A-l) from P(A;‘Az) =
P(4,).
4. Consider an experiment with £ disjoint possible outcomes where

&
b1, -« . 5 pr = 0 are the probabilities of the outcomes, X p; = 1.
1

Suppose 7 independent identically distributed experiments of this
type are conducted. Let X;, j =1, . . ., £, be the number of
times outcome j arose in the n experiments. Find the joint prob-
ability distribution of Xy, . . . , X

5. Find the limit of the joint distribution required in the previous
example under the restraints

npy =M >0,. . . ,np—y =X >0

asn-— o,
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6.

10.

11.

12,

13.

14.

Let X3, . . ., X, be independent identically distributed binomial
variables of sample size one each with probability p of success.
Show that the probability distribution of X; + - - - + X, is the
binomial distribution of sample size 7.

. Let X, Y be independent binomial distributed random variables

of sample size n and m respectively with the probability of a success
p. Show that the probability distribution of X 4 Y is binomial
with sample size n + m.

. Let X, Y be independent Poisson distributed random variables

with means Ay, A2 > 0 respectively. Show that the probability
distribution of X 4 Y is Poisson with mean \; + \,.

. Let X be a random variable that can assume only non-negative

integer values. Let g(s) = i pisty pr = P(X = k), be the gen-
k=0

erating function of the distribution of X. Does knowledge of g(s)
determine the probability distribution of X? Why?

Let f(t) be a continuous even function on [—mr]. By setting
x = cos ¢ and using the Weierstrass approximation theorem, show
that f(f) can be uniformly approximated by finite trigonometric
series in sin 4t, cos k. Use this result to show that any continuous
function f(¢) on [—mx] with f(r) = f(—~7) can be uniformly
approximated by finite trigonometric series.

The functions in x and y which are weighted sums of (Z) (?) x*
(1 — x)»*yi(1 — y)»3, k, j = 0, 1, . . ., n, are analogues of the
Bernstein polynomials. Prove the Weierstrass approximation
theorem for a continuous function of two variables on the unit
square using these polynomials.

Show that 82V/9x? is bounded in absolute value by 1/23 in the
half-plane ¢ > 8 > 0 where V(x,f) = ®&(x/\/t) 4+ €¢ and & is the
normal distribution function given by (e.10).

Show that 3*/dx* is bounded in absolute value by 2/8%% in
t > 6 > 0 where V is the function given in Problem 12.

Let X;, j =1, ..., n, be independent random variables with
mean zero and variance ¢2 > 0. The distribution function of Xj is

Fy(x). Let B, = 3 o% Show how to modify the proof of the

i=1
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15.

16.

17.

18.

19.

Random Processes
central limit theorem of section e so as to obtain asymptotic

normality of E} X;/A/B, under the assumption that
i=1

Biz / 22 dFy(x) — 0

k=1 |x|>7/Bx

asn — o for every 7 > 0.

Show that if $ E|.X;|*/B,/2 — 0, @ > 2, as n — = then
1
x2dFy(x)/B, — 0

1 |el>rB. b8

for any fixed 7 > 0 where B, is as defined in the previous example.
This remark coupled with the previous example gives us Lia-
pounoff’s form of the central limit theorem.

A function f defined on (0, ) is called convex if
Fx + (1 = Ny) < M) + 1 —Nf()

forall\, 0 <X <1, and x, y in its domain of definition. Indicate
what this means geometrically. Show that if f’'(x) exists and is
non-negative everywhere, the function f is convex. Apply this to

f(x) = x log x.

Show that a convex {function f satisfies the inequality

f (iél pixi) < Zpif(xs)

for all 1, . . ., x, and all p;, p;: > 0, Ep; = 1. This inequality is
called Jensen’s inequality.

Find the entropy of (a.) the binomial distribution; (b.) the Poisson
distribution.

Using Jensen’s inequality show that Hg(®) < H(®). What hap-
pens to the inequality when @ and ® are independent experiments.
Use the inequality above to obtain H(@ V ®) < H(®) + H(®).
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Notes

1. Many of the basic ideas and tools of probability theory are discussed in sec-
tions a, b, and d for probability spaces with at most a countable number of points.
They are introduced in Chapter IV again for general probability spaces. One hopes
that the treatment given for the discrete case in this chapter will intuitively motivate
the discussion in Chapter IV for general probability spaces.

2. The binomial and Poisson distributions of section c¢ are the discrete proba-
bility distributions that most commonly arise in theory and practice. An extensive
discussion of other discrete distributions and of a wide range of combinatorial
problems in which they arise can be found in Feller [15].

3. A derivation of the Weierstrass approximation theorem ordinarily would
not be given in a text on probability theory. It is given in section e because it follows
immediately from the law of large numbers by S. Bernstein’s simple and beautiful
proof. Notice that it explicitly produces an approximation of simple form. Further,
a more detailed analysis would give bounds on the error of approximation in terms
of the regularity of the continuous function approximated.

4. The proof of the central limit theorcm given in section e is an older proof
but it is well worth reviving for expository purposes. Most of the current proofs have
limited intuitive appeal because they use a circuitous argument via some version
of transform theory. The derivation presented in this chapter certainly does not
have this failing. Further, even though some detailed estimates are required, the
proof is elementary in character. An interesting recent paper of C. Stein [A15] also
uses a direct approach to estimate the error in the normal approximation to the dis-
tribution of a sum of dependent random variables.
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MARKOV CHAINS

a. The Markov Assumption

Thus far we have discussed models of independent observations.
In fact, the most detailed and classical investigations in Probability
Theory are centered about the notion of independence. However, there
are many contexts which require models in which some notion of
statistical dependence is basic. The simplest models of this sort are
based on the Markov assumption. Even though this assumption does
not appear to allow radical departures from indcpendence, we shall
later on see that the study of such Markov schemes or processes will
give us great insight in studying various types of statistical dependence.

Consider a system that is to be studied at discrete time points
t =1, ..., nand whose possible states at each time ¢ can be com-
pletely labeled by the integers ¢ = 1, 2, . . . . It is convenient to refer
to the possible states at a fixed time as the state space of the model. The
various possible histories of the system or sample points of the probability
space to be constructed are given by n-vectors of integers w =
(i1, . . . ,ia). Assume that we are given a vector

p = (pups - . ) 1)
of non-negative numbers p;, 5 p: = 1 and matrices
1

pnmtl) = (P(m.yn+1); im, im+l = la 2’ .. '), (2)

Tnstmd

m=1,...,n—1,

with non-negative elements and row sums one

Zpoptb =1 ©)
Tmyr=1 i
The Markov assumption states that the probability of a sample point
(i1, . . . ,in) is given by the product
P((il, .. ’in)) =pi1p§1,,'i2; SR ::__l.lt:) (4)

36
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The m-th coordinate X,(w) = imy,m = 1, . . . , n, of a sample point w
is a random variable and represents the state of the system at time m.
Such a family of random variables on a probability space is an example
of a random or stochastic process. Making use of formuia (4), it is now
clear that the vector p is the vector of initial probabilities

pi = P(X1(w) = 1) (5)

and the elements of the matrices P™™+D are one-step conditional

probabilities
mmiD = P(X, ., = {mHle = in), (6)

Tyl

m=4i ...,n— 1

Such a probability model is called a Markov chain. Thus, the Markov
assumption states that joint probabilities can be computed in a simple
manner (as given by (4)) from an initial probability distribution and
one-step transition probabilities or conditional probabilities. The
simplest and most carefully studied case is that in which the transition
probability matrices P™m+1 are independent of m. We shall refer to
this as the case of stationary transition mechanism and discuss it in some
detail later on. If all the one-step transition probabilities

(m,m+1) %)

Tmstomgl

do not depend on the initial subscript 7,, the random variables
Xmy m =1, . . . ,n, are independent random variables.

The Markov assumption can be recast in another form that gives
greater insight into its intuitive meaning. Consider time ¢ = m as the
present. Let 4 be any set of sample points obtained by restrictions on
the possible states of the system in the past, that is, ¢ < m, and B any
set of sample points obtained by restrictions on the possible states of
the system in the future, ¢ > m. Thus, we would have 4, B of the form

A={ay < X1 < by, oo . yan S Xt S bl ®)
B = {am+l S Xm+l S bm+l, s e e 50 S Xa _<_ bn}-

Suppose it is known that the system is in the state i, at time m. Then
the Markov assumption (4) and the additivity of the probability
function indicates that the conditional probability of the joint occur-
rence of 4 and B factors

P(AB|X,, = in) = P(A| Xy = in)P(B|Xm = in). (9)

Thus, given precise knowledge of the present, the past (A) and future (B) are
independent. We have only shown that the Markov assumption implies
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this property. However, one can easily show that this reformulation
of the Markov property implies (4).

Higher order transition probabilities can be easily computed in
terms of one-step transition probabilities

P(Xm+' — im+r le — Im) = fmmtr) —

Ll yr

= (m,m+1) g(m+1,m+2) (m4r—1,m-4r)
iz| pim,imu [)lm+lr7')n+2 cot p"'m.,y—l-"m.;-r . (10)
e+

Tmr-1

Call the matrix of transition probabilities p{mm+n, Pommtn. A matrix

equation for computing higher order transition probabilities from
those of lower order follows readily

ProPan = POo ;< 5 < 1, (11)

This equation is usually called the Chapman-Kolmogorov equation. The
equation reduces simply in the case of a Markov chain with stationary
transition mechanism for then

PO = Per, 5 > 7, (12)

where P = Pmm+b g =1, . . . | n — 1. The higher order transi-
tion probability matrices are just powers of the one-step transition
probability matrix. All the relations obtained above have been written
out for a Markov chain with a denumerable infinity of states. All the
relations are the same, of course, in the case of a chain with a finite
number of states. They differ only in that infinite sums are replaced
by finite sums.

A simple example of a Markov chain without stationary transition
mechanism is given by the chain with

N
pgr},m-{-l) — G:—;)-, e if g > (13)
0 otherwise
Lhj=1,2,...,andm=1,...,n—1, where A\ N g & *+ - *
# Aa—1, A; > 0. Of course, if we allowA\; = Ay = + + + = \,_;achain

with stationary transition mechanism is obtained. Since the row dis-
tributions of the matrices P™™+D are Poisson, it follows that the
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elements p{mm+ of P(mm+n) are given by

m+yr—1 . +r—1
(2 aF T
oty = | _t=m i=m  ifj >4 14
z,;mr (j_i)! 4 ]—l) ( )
0 otherwise,

r > 0. This Markov chain could be taken as a model of a telephone
exchange as observed at the discrete time points ¢ = 1, . . . , n. The
random variable X; is the number of calls made through the exchange
from time £ = 1 through time ¢ = j. The additional number of calls
made in the time interval j < ¢ < j - 1 is assumed to be governed
by a Poisson distribution with mean A; and independent of the calls
already made. Such a Markov chain is sometimes called a growth
process because the probability mass drifts into the states with larger
index as time goes. This is obvious since the number of calls increases
as time goes on.

The next example is sometimes taken as a model of population
growth or death. Assume that we are studying a homogeneous popula-
tion whose growth (and death) mechanism does not change with time.
X, denotes the number of individuals in the population at time s. The
probability of one individual at time s generating j individuals at
time s + 1 is given by ¢; > 0, where

2 ¢ =1 (15)

i=0
If there are { individuals at time s, they are assumed to act independ-
ently of each other in generating progeny for the next generation.
Thus, p. ,, the probability of 7 individuals at time s generating j progeny

at time s -+ 1, is given by

bii= T @Gt Go= 4, (16)

28 SRR il
the j-th element in the vector obtained by convoluting the sequence

g = (40,1, . . .) with itself 7 times. Let ¢(s) be the generating function
of the ¢ sequence, that is,

o(s) = 2 g a7
7j=0

It is clear that ¢{™ is the coefficient of s/ in the power series expansion
of ¢(s)t
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Suppose we start with one individual at time ¢ = 0. The probability
of j individuals at time ¢ = 1 is g;, the coeflicient of s/ in the power
series expansion of ¢(s). Let us compute the probability of a population
of j individuals at time ¢ = 2. Suppose there are 7 individuals at time
t = 1. The joint probability of ¢ individuals at ¢ = 1 and j at time
¢t = 2 is given by ¢,¢/®. The probability of j at time ¢ = 2 is obtained
by summing over ¢

o
2 g5 (18)
i=0

But this is the coeflicient of s7 in the power series expansion of

P = oe0) = I g 00 19)

Essentially the same argument indicates that the probability of j
individuals at time ¢ 4 1 is given by the coefficient of s/ in the expan-
sion of

V() = p(e®()) t = 1,2, . . .. (20)

Certain aspects of the growth or death of the population can be
described by studying the iterates ¢®(s) of the generating function ¢(s).
Let e; be the probability that the population dies out before or at

time ¢, that is,
e = P(X, = 0). 21)

Thus ¢ = ¢®(0). Suppose we are interested in the probability of
eventual extinction of the population, namely, lim ¢, = ¢. This limit

t—
exists since e; is a nondecreasing bounded sequence. Note that ¢(s) is a
continuous nondecreasing non-negative function on 0 < s < 1 with
¢(1) = 1. It is clear that e is a solution of the equation

e = ¢(e) (22)

e = lim ;11 = lim (¢ (0)) = ¢(e). (23)
o

t—

for

In fact ¢ is the smallest solution of this equation in the interval {0,1]
(see figure 3.1). For if ¢ is any other solution in [0,1]

¢ = lim ¢®(0) < lim ¥ (§) = ¢ (24)
{—

t—

since ¢ is nondecreasing. Consider the solutions of ¢ = ¢(¢) in [0,1].
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The value { = 1 is one such solution. If there is another solution ¢,
0<¢ <1,
(1) — o) _

By the mean value theorem therc is a point o, { < ¢ < 1, at which
o'(0) = 1. Now ¢'(s) = 2 kqus*! is a continuous nondecreasing
k=0

function of 5, 0 < s < 1. Thus, if there is such a point o, ¢'(1) > 1.

@(s)
ple)=e == ,
% (0) 5
! L
s=e s=|
s=0

F1c. 3.1. Graph of the generating function ¢(s).

In fact, excluding the trivial case ¢(s) = s, ¢’(s) is strictly increasing
and ¢’(1) > 1; there can be at most one such point 0 < ¢ < 1 such
that { = ¢(¢). Conversely if ¢’(1) > 1 thereis a solution §, 0 < ¢ < 1,
of (22) since ¢(0) > 0. Notice that ¢'(1) = Zkqy = p is the expected
number of individuals produced by one generation. We therefore have the
following result. If u < 7 (except for the trivial case q; = 1) the prob-
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ability of eventual extinction of the population is one. If p > 1, there is a unique
solution §, 0 < ¢ < 1, of (22) and ¢ is the probability of cventual extinction
of the population. 1f there are many individuals, say 7, the probability
of eventual extinction when ¢ < 1 is small, for it is {* assuming the
individuals act independently.

It is very easy to compute the expected number of individuals at
time » for it is given by

d d
EX, = a}¢(1t)(5)ls=l = I (o™ 1(5)) jgm1

iy d
= (D) 5ot = e = W (26)

If p > 1 the growth of the population is exponential in the mean.
Such models are called branching processes. They have been used as
models of bacterial colony growth and chain reactions. An intensive
discussion of such models can be found in a paper of T. Harris [31]. A
treatment of corresponding multi-population models can be found in
another paper of Harris [32].

A third illustrative example is provided by some simple discrete
models of a diffusion process. Consider a particle in a random walk
on the integer points of the real line. The states are labeled by the
integers ¢ = 0, £1, . . . . Given that the particle is at ¢ at time ¢, its
probability of going one step to the right is given by p and one step
totheleft by ¢, p,¢2>0,p+ ¢ = 1. Thus

biiv1 = b, pii-1 = 4. (27)

Assuming that the particle isat 7 = 0 at¢ = 0, let us compute the prob-
ability that it will be at ¢ = j at time ¢ = n. The particle can only reach
even points in an even number of steps and odd points in an odd num-
ber of steps. For convenience, the computation will only be carried out
for j, n even. The particle can only end up at j if it makes (n + j)/2
steps to the right and (n — j)/2 steps to the left. There are precisely

binomial coefficient
n
(w+pm) (28)

such distinct paths and each of them has probability

nt+j n—J
2 2

p2q?. 29)
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The probability desired is therefore given by

2
(n + J)/ 2 :

Consider now a random walk with an absorbing barrier at —a < 0-

The states are now labeled by the integers i = —a, —a + 1,
The transition probabilities from the states i > —a are given as before
piiv1 = py  piic1 =g, (31)

592> 0,p+ g = 1. However,

p—a,—a = 1. (32)

Thus, if the particle ever enters state —a in its walk, it is held fast there
from then on. Again assuming the particle is at 0 at time ¢ = 0, we
would like to compute the probability that the particle is at j > —a at
time ¢ = n. For convenience, assume that j and 7 are odd. In comput-
ing the desired probability the paths in the unrestricted random walk
(without a barrier) that go from 0 to j in n steps and pass through —a
must be deleted. However, there is a one-one correspondence between
the paths that go from 0 to j through —a in n steps and those that go
from —2a to j in n steps. Consider any specific path that goes from 0 to j
through —a. Let ¢, 0 < ¢ < n, be the first time the particle following
the path is at —a. Take the mirror image of this first part of the path,
from time O to time ¢, with respect to —a. We then have a path that
starts at —2q at 0 and is at —a at time ¢, Leave the remainder of the
path from time ¢ to time 7 as it was. The new path is then a path from
—2a to j. A little reflection indicates that this correspondence is one-
one. Thus the total number of paths from 0 to j in time n that do not
pass through —a is equal to the total number of paths from 0 to j in
the unrestricted random walk less the total number of paths from —2a
to j in an unrestricted walk

n .
(') - <—(" s ) 2

_+_
Since each path has probability p 2
in n steps is

2

, the probability of reaching j

n " ntj n—j
(0 492) @ED o )|r* g =
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Let us now return to a brief discussion of a Markov chain with
stationary transition mechanism. The transition mechanism is governed
by the one-step transition probability matrix P = (p;;). Given a
transition matrix P one may or may not be able to find a left invariant
probability vector p = (ps), pi > 0, Zp; = 1

PP = p. (35)
Given the existence of such a vector, it is of interest to look at the

Markov chain with initial distribution p and transition matrix P.
The instantaneous probability distribution

PX,=1) =p, s=0,1,...,n (36)
is invariant under time shift. In fact, the probability of the events
{ Xort =11, « « o 5 Xogtt = la}y 51 < + + + < 5, is independent of ¢

P(Xs1+t = il, ..oy Xsa+t = ia) = [Jil[);ffi:sl) . e . [)f»:i:;:'o (37)

(p) is the (4,7)-th element of P?). Thus, the probability structure of
the process is invariant under time shifts. Such processes are called
stationary processes. Processes like this are reasonable as models when the
probability structure of the phenomenon described is stable through
time. In Chapter V we shall examine stationary processes that are more
complex in structure.

Invariant probability vectors will be shown to exist for any finite
dimensional transition probability matrix P in section b. However,
they need not exist when P is infinite dimensional. An example illustrat-
ing this last remark is given by the matrix P for the growth process with

big = l%lf]—-z,z-l-l (38)

0 otherwise.

A left invariant probability vector p would have to satisfy
2 pipii = Y(pia + b)) = b (39)

for ; > 1 and therefore all its components would have to be equal.
This is obviously impossible.

b. Matrices with Non-negative Elements (Approach
of Perron-Frobenius)

We shall discuss certain structural properties of finite square
matrices A = (a;;34,§ = 1, . . . ,n) with non-negative elements a;; > 0
in this section. Finite probability matrices correspond to the special
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case obtained by setting row sums Z a;; equal to one. This is a con-

7
dition on preservation of mass. The more general case discussed here
allows for generation or destruction of mass. Our approach is non-
probabilistic and due to Perron and Frobenius. The very elegant
treatment given here is due to H. Wielandt [76]. In section ¢ analogues
of some of the results will be established for transition probability
matrices in both finite and infinite dimensional cases by probability
methods.
A number M\ is said to be a right eigenvalue of the matrix A if there
is a nontrivial solution x # 0 = (0, . . . ,0) of the equation
Ax’ = \x'.* 1)
The column vector x’ is a corresponding right eigenvector. Now (1)
is satisfied if and only if A — A (I the identity matrix) is singular. Thus A
is also a left eigenvalue since there is a vector y such that yA = Ay. Of
course x,y will generally be different vectors. We shall simply refer

to A as an eigenvalue of A. It is clear that the eigenvalues X of A are the
solutions of the characteristic equation

®(\) = det (A — AI) = 0. )
Knowledge of the eigenvalues N of A gives one considerable infor-

mation about the behavior of the elements ¢{™ of A™ for large m.
Consider the generating function

A() = 3 2iAi = (I — zA)-! 3)
i=0
which is well defined for sufficiently small |z]. By Cramer’s rule the
(i,7)-th element a;,j(z) of A(z) is given by

pii(z) b:4(2) )
det(I—2A) (1 —X\2) - - - (1 —N2)
where p.;(z) is the cofactor of the (j,7)-th element in I — 2A and

A1, . . . , M, are the eigenvalues of A. If the cigenvalues A; are distinct
we see that

a;j(2) =

o
aij(z) = Z afzm
m=0
where
5,']' ifm=20

(m) — n . 5
R a,,; 2 b{Ar otherwise, ®)
o k=1

that is, af is a weighted sum of the m-th powers of the cigenvalues.

* Given a rectangular matrix A, A’ is its transpose, that is af,,- = a;j;.
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An n X n matrix A is said to be irreducible if one cannot bring A
into a form

_______________ 6)

by a consistent relabeling of the rows and columns where Ay is an
r X r matrix, 1 <r <n, and Ay is an (n — r) X (n — r) matrix.
Otherwise A is reducible. We shall be interested in irreducible non-
negative matrices. A vector x will be called non-negative if all its com-
ponents x; are non-negative.

Theorem 1: The characteristic equation of the non-negative irreducible
matrix A
®(z) = det (z2I — A) =0 )

has a simple positive root N that is greater than or equal to the absolute value
of any other root. The eigenvector of A corresponding to this root can be taken
with all its components positive. The maximal eigenvalue N is the only one with
its corresponding eigenvector non-negative.

Let x be any non-negative vector that is nontrivial (x # 0). Set

Z 4%
A; = min < (8)

i X5

with the convention that the fraction is set equal to 4« if x; = 0.
Notice that A is the largest number for which

Ax’ — Ax’ > 0. 9
Let y be the vector with all components equal to one. Then
’ ’
a< YA O (10)
yx yx

where C is the largest component of the vector yA. Thus the numbers
\: are bounded above. Let A be the least upper bound of the num-
bers Az
2 aix;
A = max min < (11)

x>0 ¢ X3
x 70

This upper bound X is positive since Ay > 0 for x = y (A has no row
consisting entirely of zeros since it is irreducible).
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It is clear that there are extremal vectors, that is, vectors z 5 0,
z > 0 such that Az’ — Az’ > 0. Note that these are vectors for which
A is attained, namely A = A,. Nonetheless, by the very definition of A
there is no vector x > 0 such that Ax’ — Ax’ > 0. We wish to show
that every extremal vector z is an eigenvector of A with eigenvalue \ and that
z is positive. Consider any vector x > 0, x 5% 0. We shall first show that
X+ A)»x' > 0. Set (I + A)'x’ = x’. Then x¢+D) = x 4 xMA’
> x® > 0. Thus in x*+? at most those components that vanished in
x® can be zero. However, it might be that exactly the same compo-
nents in x* and x®*+? vanish. But then we can write

’
x(")' = (101 ), u > 0

4 14
XD = O L AxOY = (8) + (2: 22) (3) (12)
vl
- (O )

But then Ajju’ = 0 implying that Ay = O contrary to the assumption
of irreducibility of A, a contradiction. Since x = x©® has at most
n — 1 components zero, this implies that x™ 9 has no zeros. Now
let z be an extremal vector so that z 5% 0, z > 0, Az’ — Az’ = x’ > 0.
If x#0, I4+ A)*x" = Ay’ — Ay’ > 0 where y' = (I + A)"'z".
Since this is impossible x = 0 and z is an eigenvector of A with eigen-

value X\. Moreover z > O since 0 <y = (1 4+ M)z
Given any matrix M = (m;;) let M* = (|m;;]) be the matrix with
elements the absolute values of the corresponding elements of M. Now
let @ be any eigenvalue of A so that Ax’ = ax’ for some x 5 0. Then

lajx* < Ax¥, Ja] < A <A (13)

so that X is the eigenvalue with maximal absolute value. Further X is the only
eigenvalue with a non-negative eigenvector. For suppose there were another
such eigenvalue a with eigenvector x > 0, x % 0. Let y be an ex-
tremal vector of A’. Then

ayx’ = yAx' = (yA)x' = Ayx". (14)

Then a = A since y > 0 implies that yx’ > 0.

Let x be an eigenvector of A with eigenvalue A and z a given
extremal vector. Take ¢ so that x — ¢z = y 2> 0 and one component
of y vanishes. But then y cannot be an extremal vector. However,
Ay = Ay and therefore y is extremal unless y = 0. Thus x = ¢z and A



48 Random Processes

has only one linearly independent eigenvector whose components can all be taken
positive.

We now show that X is a simple root of ®(z). It is enough to show
that ®'(A) # 0. But '(A) is the trace of the matrix Q that is adjoint
to A\I — A. Since the rank of \I — A isz — 1, Q is not the null matrix.
Further (AI — A)Q = 0. This implies that every nonvanishing
column of Q has elements of the same sign (since it is an eigenvector
of A with eigenvalue A). However, the relation QWM — A) =0
implies the same of the rows of Q. Thus all elements of Q have the
same sign and hence ®(\) = trace (Q) # 0. The proof of the theorem
is complete.

Notice that (11) is an interesting maxmin property of the eigen-
value. Of course, when A is a transition probability matrix X = 1. For

2 aijx;
minL— <1 (15)

b Xi

for any x # 0, x > 0, since T a;; = 1. However, 1 is attained by

1
taking x1 = - - - = x, # 0. The left eigenvector x of A with eigenvalue
one can be taken as the initial probability distribution of a Markov chain with

transition matrix A if it is normed so that Z x; = 1. In fact, this chain will
i
then clearly be a stationary Markov chain.

The next result is an interesting comparison theorem.

Theorem 2: Let A = (a;;) be an irreducible matrix with non-negative
elements and B = (b;;) a matrix with complex elements, |b;;| < aiji,j =1,

., n. Let X be the maximal eigenvalue of A and g an arbitrary eigen-
value of B. Then |B| < \. If equality holds 8 = \e'¢ and B can be written

B = ¢“DAD! (16)

where D is a diagonal matrix whose diagonal elements have absolute value one;
further then |b;;| = a.j.
Now
Bx’ = Bx’ 17)
implies
Bix* < B*x* < Ax™ (18)

so that |8] < Ay < A If 8] = A, x* is an extremal vector of A and

[Blx* = Ax*, x* > 0. (19)
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But then B* = A, |b;,| = 4;;. Now x’ = Dx* where D is a diagonal
matrix whose diagonal entries have absolute value one. Set 8 = Aeie.
Then
[B]x* = Cx* (20)
where
C = D~ BD, C* = B* = A. 21)

But Cx* = C*x* and since x* > 0
C = C* C = A, B =¢*DAD. (22)

Theorem 2 can be used to obtain the following result.

Theorem 3: Let A be an irreducible non-negative matrix. Suppose ihere
are k roots of ®(z) = 0 of maximal absolute value. Then they must all be
simple and of the form Ne* k(5 =1, . . . , k). The set of all n roots of A
are invariant under a rotation in the complex plane about zero through an angle
of 2w/k but not through any smaller angle. By appropriate relabeling of rows
(and correspondingly of columns) A can be put in the form

0 A, O ... 0
0 0 Ay, ... 0
0 0 0 ... 0 (23)
0 0 0 e Ak
A, O 0 ... 0
Suppose there are £ roots of maximal absolute value A
aj =A% 0=¢ < < -0 S < 2m. (24)

The assumptions of Theorem 2 are satisfied with B = A and 8 = «;
and thus there is a diagonal matrix D; such that

A = ¢*D,AD; ", (25)

Since A is a simple root of ®(z) = Osoarealltherootse;jj =1, . . . ,£

Thus the «; are all distinct. Using (25) we see that
A = ei(‘Pji*Pi')TAT"l(T = DD;SI (26)

)

so that the numbers Ae'(¢i£¢i) are eigenvalues of A. But this implies that

w=G-1L @
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. . . . 2
The invariance of the set of eigenvalues through a rotation of —/Z—r about

the origin follows from (27).
Rearrange the rows and columns of the matrices so that D; has
the form
) 02 0
|

D, (28)

0

where the I’s arc identity matrices and the §;’s differ from each other
mod 2w. Carry out the corresponding decomposition of A into g2 sub-
matrices A;;. Equation (25) in the case j = 2 can then be rewritten

A, = ei(%’-ﬂ,»—sf) Ay (29)

so that A;; = 0 when 2_klr -+ 6; # 8; mod 2x. Thus there is at most for
each ¢ one j for which A;; ¢ 0. On the other hand there must be one
since A is assumed to be irreducible. Thus given §; there is precisely

one j such that §; = —zklr -+ 6;. If the rows (and columns) have been
ordered properly
. 2r .
a,~=al+(]-1)7” j=1,..., k=g (30)

and A has the form (23).

We have already remarked that one is always an eigenvalue of
maximal absolute value if A is a transition probability matrix. Let us
see what the probabilistic meaning of other eigenvalues of absolute
value one is when A is irreducible. If there are £ eigenvalues of absolute
value one, Theorem 3 states that there are £ submatrices such that A
can be laid out in block cyclic form (23). Call the distinct sets of row
labelings (or sets of states) corresponding to Ap, . . . , Ay the sets
of states S, . . . , Sk Consider the natural order of the sets of states
induced by the integer indexing with the convention that 1 follows £.
From (23) it is clear that one can go from a state in set .S; in one step
with positive probability only to states in the following set of states.
Consequently one can only return to S; after leaving S; with positive
probability in a multiple of % steps. It is natural to call such states
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periodic with period k. Theorem 3 tells us that if an irreducible transi-
tion probability matrix has £ eigenvalues of absolute value one, the
states are all periodic with period £. We shall discuss periodic states
again in section c.

A simple illustrative example is given by the circulant matrices,
that is, matrices of the form

Qo a * " " QAp
Ap-1 Qo " " " Qp-2

A=| . (31)
ay as * ag

Since matrices with non-negative elements are desired, the a; > 0.
However, most of our computations are valid without this restraint.
Notice that the matrix A is a polynomial

n—1
A= T aJ (32)
k=0
in the matrix J B _
01 0---0
0o 0 1---0
J=1" : (33)
00 0---1
(1 0 0---0]

with J° = I, the identity matrix. We need therefore only obtain the
eigenvalue and eigenvector structure of J in order to get that of A. The
eigenvalues of J are \; = ¢%*¥/» with corresponding right eigenvectors

1
e2miiln
1 .
O = —= j=0,1,...,n—1. (34)
V'n
£2mii(n—1)/n
2mij n—1 2mikj

The eigenvalues of A are then \j =a(¢” ) = X ae » . Notice
k=0

that a maximal eigenvalue of A is Ao = 2 a; since the a;’s are all
&
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non-negative. It will be simple as long as one g, other than a, is posi-

tive. The left eigenvector with maximal eigenvalue is —1—_ 1,1, ...,1).
n

c. Limit Properties for Markov Chains

Let us now consider a Markov chain (finite or infinite state) with
stationary transition mechanism. Let P = (p;; 4, 7 = 1,2, . . .), pij
> 0, T pi; = 1, be the transition probability matrix of the chain. Our

7

primary interest is in the asymptotic behavior of the n-step transition
probabilities p(, P* = (p{"), as n — . An interesting and illuminat-
ing classification of the states of the chain will be introduced.

The state k£ can be reached from the state j if there is an integer
n > 1 such that p® > 0. We shall call a class of states C of the chain
closed if pijx = O whenever j is in C and k is outside. Thus no state outside
a closed class C can be reached from any state in C. 4 closed class of
states is minimal if it contains no proper closed subset of states. Notice that
the statement that the matrix P is irreducible (see section b) is equiva-
lent to the class of all states of the process being a minimal closed class
of states. We might therefore call such a Markov chain an irreducible
chain.

Consider now a fixed state j of the chain and suppose the system
studied is in state j at time zero. Let f{™ then be the probability that the
first return to j occurs at time n > 1. Note that

D= pii 1)
[P =3 = fPi
and generally

im) =p<{;,) _ ;1)1,1(3—-1) —_ e .. _fycn—l)pj’j. (2)
The sum
fi= T fm ©)
n=1

is the probability that the system ever returns to the state j. If f; = 1,
the time for a first return to state j is a well-defined random variable.
The time required for a first return from state j to state j is called the
recurrence time for the state j. If f; = 1 the first moment

M= 5 nf ™ )

n=0
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is the mean recurrence time for state j. Note that if f; < 1, there is a positive
probability the system will never return to j.

We shall introduce a classification of the states of the chain in terms
of their recurrence time. The state j is called a transient state if return to j
is not sure, that is, f; < 1. If return to j (from j) is sure (f; = 1) the state is a
recurrent state. A recurrent state with infinite mean recurrence time p; = ©
is called a null state. A state j is periodic with period t if return is impossible
except in perhaps t, 2t, 3¢, . . . steps and t is the greatest integer larger than
one with this property. A recurrent state that is neither null nor periodic is called
a persistent state.

It should be noted that the study of Markov chains with an infinite
number of states was initiated by A. Kolmogorov [45]. Further work
was carried on by Doeblin [10], Doob [11], Chung [8], Feller [17], and
others. The terminology used in this section is due to W. Feller [17].

The recurrence time distribution of a state of the chain can be
studied by making use of generating functions. Equations (2) relate the
probabilities f™ of first return and the ordinary transition probabilities
p™. Suppose we let

£ = 0,50 =1 )

and introduce the generating functions

F(s) = §0 fimgn (6)
Gs) = T pmsm. @
n=0

Equations (1) and (2) can then be written in terms of the generating
functions as

G(s) — 1 = F(5)G(s) ®
or
1

G(s) = 1—__“1;@ )]

From this it is clear that j is a recurrent state if and only if
lim G(s) = 2 p™ = . (10)
§—1— n=0

Consider as an example the unbounded random walk on the lattice
points ¢ = 0, £1, +2, ... of the line with probability p > 0 of
going one step to the right and ¢ = 1 — p > 0 of going one step to
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the left. Suppose we start at a state (say ¢ = 0) at time zero. The
probability of returning in z steps to zero is

0 if nis odd
="\ 33 (11)

n | p%¢2 if n is even.
2

Thus it is already clear that the state (and hence every state) has period
two. The generating function

©

6 = ) () g

n=0
o 2 (_.1)n22n (—n}é) annshz
n=0
= (1 — 4pgs?) % (12)
Now
lim G(s) = (1 — 4pg)—*¢ (13)
8->l

which is finite if p 5% ¢ and infinite if p = ¢ = 14. Thus if p 5 ¢, the
states are all transient. This is not unexpected since if p > ¢ (p < ¢) we
would expect a pronounced drift to the right (left). However, if there
is balance, p = ¢ = 14, the states are recurrent. Now

F(s) =1 — (1 — 4pgsh)* (14)
so that when p = ¢ = 14, the mean recurrence time is given by
lim F'(s) = lim s(1 — s % = oo, (15)
81— 81—

This is somewhat surprising for the random walk can be thought of in
terms of a succession of independent tossings of fair coins. At time n the
location of the particle in the random walk is equal to the excess of
heads over tails in n tossings. Location zero corresponds to equilib-
rium, an equal number of heads and tails. Since the states are recurrent,
we come back to equilibrium with probability one as expected. But
the fact that the mean recurrence time is infinite implies that one may
have to wait a very long time before one comes back to equilibrium.

Consider now an irreducible Markov chain. Let j,k be any two
states of the chain. Since the chain is irreducible one can go from j
to £ and from £ to j with positive probability. For suppose £ is inacces-
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sible from j. Then by deleting £ and all states that lead into £ with
positive probability we would obtain a proper closed subchain con-
trary to the assumption that the original chain is irreducible. Let N
be the length of the shortest path from j to £ with positive probability.
Similarly let A1 be the length of the shortest path from £ to j with posi-
tive probability. Set pi) = a > 0, pi¥ = g > 0. Then for any posi-
tive n it is clear that

VA N M) —
pENHD > pIOpmpEY = aBpim)

N Ny —
PEENHD 2 pEPpIIpR = aBpT).

(16)

Thus the sequences pi), pir) have the same asymptotic behavior. We

already know that j is recurrent if and only if ¥ p» = o, But the
n=0

inequalities (16) imply the equivalence of the divergence of Zp¢ and
Zpm. Thus the states of an irreducible chain are either all recurrent or all
transient. Now suppose j is periodic with period ¢. The number N + M
is divisible by ¢ since a return to j is possible in N + A steps. The
inequalities (16) then imply that £ is periodic with period ¢. Therefore,
if one state in an irreducible chain is periodic with period t, all the states are
pertodic with period t. A theorem of Erdos, Feller, and Pollard indicates
that

1
) s = . 17
7 1 U; ( )

as n — « if j is a recurrent nonperiodic state. Here, of course, y; is the
mean recurrence time of the state j. If j is a null state uj = 0 and if j is a
persistent state then u; > 0. Let us assume this result for the moment.
The Erdés, Feller, Pollard theorem will be derived later on. The Erdés,
Feller, Pollard theorem and inequalities (16) imply that all the states of
an trreducible chain are persistent or none of them are.

Let us briefly discuss the case of an irreducible chain with states of
period ¢. Let j and & be any two states of the chain. Since the chain is
irreducible there are integers N, M such that p® > 0, p* > 0.
Since pN+3 > pMpM ) the integer N + M is divisible by ¢. Hence if
N, N’ are the lengths of two paths of positive probability from j to £,
they must have the same remainder after division by ¢. For fixed j each
state £ corresponds to a remainder », 0 < » £ ¢ — 1, such that a
transition from j to k with positive probability is possible only in
v, v+ 1, v+ 2t . .. steps. Take j = 1 and classify all the states into
disjoint sets So, Sy, . . . , Si_1 where £ belongs to S, if p{¥) > 0 implies
that N = v + nt. Consider the sets .S, in their natural indexed order
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with the convention that §y follows S;_;. It is then clear that a one-step
transition from a state in .S, will lead to a state in the following set of
states. Notice that a ¢-step transition leads back to a state in the same
set. If we therefore consider the matrix of transition probabilities P¢,
each set of states §, is a closed irreducible nonperiodic class of states.

Consider an irreducible nonperiodic Markov chain. Let us now
examine the asymptotic behavior of the transition probabilities p{®
as n — « where j and £k may be distinct states. We already know that
the irreducible character of the chain implies that all states must be of
the same type. Now

n
= 2 e (18)
m=

where f{m) is the probability of a first passage from j to % in precisely
m steps. If the stales of the chain are transient p") — 0 as n — o for all k

and hence by relation (18) p™ — 0 asn — «© for all j,k ( E f(m) 1).

1.k

1 1
If the states of the chain are null siates, p{) Mo = = 0 as n— o
k

and the same argument indicates that p{*) — 0 asn — . Now consider
the case of persistent states. Since the states are recurrent % f{m = 1
m

for otherwise return to j from j would not occur with probability one.
Further by (17) p{» ——>“l = ;> 0 as n — «© and thus relation (18)
7

implies p{m — ux > 0 as n — «. We shall now show that if the chain
is irreducible and nonperiodic, there is an invariant instantaneous distribution
if and only if the states are persistent, in which case the distribution is unique
and given by {ux}. Let {2} be an instantaneous invariant distribution,
that is, a probability distribution satisfying
v = E Vipi g (19)
?

Relation (19) implies that
z vzp(n) (20)

for all n. On letting n — © we have

g =2 vty = U (21)
1

so that if there is an invariant distribution it is uniquely given by {u;}.
The states of the process must therefore be persistent. All that is now
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required is to show that {u;} is in fact a probability distribution satis-
fying (19) if the states are persistent. Now 2 u < 1 since T p® = 1
& %

and u = lim p). Now pi+V = T pmp, . On letting n —  the in-
n—> © v

equality
w, > T typok (22)

is obtained. On summing over £ the same quantity 2 u, is obtained and
1

hence the inequalities must have been equalities. But then {u,} is a
nontrivial solution of (19) since the u, > 0. Setting vz = u(Zw,)~* an
invariant distribution is obtained. But we have already seen that an
invariant distribution if it exists must be {u;}. Thus 2 u, = 1.

v

Notice that existence of an invariant distribution means that one is
a left eigenvalue of P with corresponding eigenvector a probability
vector. Periodic states imply the existence of other eigenvalues of P
of absolute value one.

The Erdés, Pollard, Feller, theorem relates to the asymptotic
behavior of a sequence p{% (n — o) satisfying relation (2). We now
state and prove this theorem. In the following proof think of f, as the
probability of first return to a state in z steps and of , as the transition

probability of return (not necessarily a first return) to the same state
in 7 steps.

Theorem: Let {f,}, n =0, 1, . .., be such that fo = 0, fr > 0,

Zfn = 1 and the greatest common divisor of the integers n for which fn > 0 is
one. Set uo = 1 and for n > 1 let

Un = frita_y + fota_2 + - - - -+ fatto. (23)

Then un — 1/p where p = Znfn(un — 0 if Znfa = ©) asn— .

Let 7 = fap1+ fagze+ - -+ . Then ro=1 and f; =rjy — 7,
7 =1,2, . ... Using this relation between the f’s and r’s, equation
(23) can be rewritten as

-1

n n
A,. = E Tilln—y = - ijun_l_j =A,,_1 = " = Tole =Ao= 1. (24)

j=0 j=

Now #p = 1 and hence by equation (23) 0 < u, <1 for all n. Let
A = lim sup u,. Further let j > 0 be such that f; > 0. We show that

n~>
if n, is an increasing sequence such that #,, — A, then #,,; — \. For
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if this were not so there would be arbitrarily large » in the sequence 7,
with #,—; < X < \. Take N so large that ry = % fi<g €>0.
Since uy < 1, forn > N NH

tun < fottn + frttny + * ©  + fata-n + & (25)

For sufficiently large n of this sort we would then have

A—e<u, <(fot+ " +firrtfin+ - FMA+9
+ N+ & (26)
SU=RHA+)+ N +e<r+2e—f;(A—N)

and this leads to a contradictionif f;(A — A’) > 3 &. Therefore u,,—; — A.
A repetition of this argument indicates that u,,_s; — X and generally
un,—z; — M for any fixed positive integer x. Similarly if ¥ = lim inf u,

n—w
and 7, is any sequence for which u,, — %, then u,,_,; — « for any posi-
tive integer x. Now consider all the integers j for which f; > 0. There
is a finite subcollection a, b, ¢, . . . , m of these integers with greatest
common divisor 1. Now by an extension of the argument given above
if up, — N, then un,_zoyp—...—wm — A for all fixed integers x, y, . . . ,
w > 0. But every integer £ greater than the product abc - - - m can
be represented in the form £ = xa 4+ yb -+ * - - + wm with x, y,
. sw > 0. Thus u, ; — A for every £ > ab - . - m. The analogous
result for convergence to vy holds if u,, — . Now let u,, — X. Then
Un,—x—>Nfork > ab - - - mand takingn =n, —ab - - - m — 1 we

have
12> roun + ritta—y + © 0 ¢+ TNULN. 27)

On letting n, — « the inequality 1 > A(ro + - - * - rx) is obtained.

Since this is true for all &, 1 > Au since u = Zr;. Notice that this

implies that A = lim u, = O if g is infinite. Suppose u finite. Take N

sufficiently large so that EN r; < & &> 0. Let n, be an increasing
7>

sequence such that u,, — . Taken = n, —ab - - - m — 1. Then
1 <roun+ -« +ryttan+ € (28)
and on letting 7, — © we obtain 1 < (ro+ - - - + ry)y + € and

hence uy > 1. Since it was already shown that pA < 1, the equality

A=qyg= ;l—lmust hold.
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Relation (17) is obtained by applying the above theorem to the
equations (2). For the asymptotic behavior of transition probability
of periodic states see problem IIIL.14.

d. Functions of a Markov Chain

The structure of a Markov chain X(m) has been discussed. * How-
ever, in various contexts, it may be that the experimenter does not
observe the process X(m) but rather a derived process Y(m) = f(X(m))
where f is a given function on the state space of the Markov chain
X(m). The states ¢ of the original process on which f equals some fixed
constant are collapsed into a single state of the new process ¥(m). We
shall call the collection of states on which f takes the value « the se
of states S,. Of course, only nonempty sets of states are of interest.
One would like to know whether the new process is Markovian. The
following simple example indicates that this is generally not the case.
Let the initial process X(m) be a Markov chain with the three states
1, 2, 3, transition probability matrix

0 15 13
P=13 2 % 6]

25 Y Mo
and initial probability vector

p = (}3,}5,%3). (2

The process X(m) is stationary since p is a left eigenvector of P with
eigenvalue one. Collapse the set of states § consisting of 1, 2 into one
state. Then

P(X(m + 2)e S, X(m + 1)e S| X(m)eS) = 2946
#= P(X(n + 1)eS|X(n)e $)% = (1340 (3)

so that the new process is not Markovian. It is natural to look for condi-
tions on the function f and the probability structure of the Markov chain
X(m) that will imply that the new process Y(m) = f(X(m)) is Mark-
ovian. For if ¥ (m) is Markovian, we can apply the powerful techniques
that are relevant in the analysis of such processes to the computation

* Every so often we shall write X(m) instead of X,.. There will however be no
confusion as it will always be clear what is meant from the context.
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of aspects of the probability structure of ¥(m). In section a we have
already noted that the transition probabilities of a Markov chain
satisfy the Chapman-Kolmogorov equation. Such a condition might
therefore possibly be provided by insisting that the transition proba-
bilities of the ¥ (m) process satisfy the Chapman-Kolmogorov equation.
However, an example of P. Lévy [52] indicates that this condition does
not generally imply that the new process ¥(m) is Markovian. We now
give an example that is a simplification of P. Lévy’s to illustrate this.

Let X(m) = (Y(m), Y(m — 1)), m =1, 2, . .., be a Markov
chain with transition probabilities .

I

P(Y(m + 2) = w|Y(m + 1) = uy, Y(m) = w)

= ; {1 — cos [g}r Quz — uy — uo)]l

upun, us=0,1, . . . ,r—1. (4

Thus X(m) is a Markov chain with a state space consisting of the r?
points (4,j), 4, § =0, . .., r— 1. Let the initial probability dis-
tribution be

Pru = PLYO) = o, (1) = ] = ®)

With this initial distribution X(m) is stationary and persistent. The
process Y(m) is a function of X(m) but is not Markovian (it might be
appropriate to call it two-step Markovian) since the transition struc-
ture (4) depends on the two previous locations of the process. However,
a direct computation indicates that the one-step transition probabilities
of Y(m) are of the form

PY() = w|¥(s) = u) = 17 1<s<y, )

and they clearly satisfy the Chapman-Kolmogorov equation. We thus
have a simple example of a non-Markovian process ¥(m) whose one-
step conditional probabilities (6) satisfy the Chapman-Kolmogorov
equation.

Let X(m) be a Markov chain with transition probability matrix
P = (p:;). Take f a given function on the integers. The requirement
that we will impose on f and P will be somewhat stronger than that
spoken of above. It will be that ¥(m) = f(X(m)) be Markovian what-
ever the initial probability distribution of X(m). Let the sets of states
of such a process X(m) that are collapsed into single states a of Y(m)
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by the function f be denoted by S,. Take any initial distfibution
w = (w;), w; > 0, for X(m). If the new process Y(m) is Markovian, then

PIY(1) = a, Y(2) = B, ¥(3) =]
' = 2 wipiipis,

ieSa,jeS'g .
= P[Y(1) = a]P[Y(2) = B]Y(1) = a]P[¥Y(3) = 7|Y(2) = £]
E % wuﬁu,vpv,s.'
= B Pl E— 7
;'wﬁ L [ @)
where
bis, = Z pii (8)
jeSq

The expression on the right of (7) is well defined as long as pi,55 > 0
for some i. We shall call a set of states S, a single entry set if p;s, > 0
for i from at most one set of states Sg. Single entry sets complicate the dis-
cussion and therefore it will be assumed that none of the sets of states S,
are single entry sets. A discussion of the problem allowing single entry
sets in the case of Markov processes with a general state space is to be
found in [68]. Consider any two states 7, ¢’ in distinct sets of states
Sas Sa’ for which pis,, pr,ss > 0. Let all the w, with u 5 ¢, ¢’ tend to
zero. Relation (7) then implies that

Z (wipip + wihio)po,s,

v!S‘g
i iiDis, = Wipi 9
@ . Puibi.sy = wipi.ss wipi,sg + wipir,sg ©)
,nSﬁ
But this is valid for all w;, wy only if
[h‘,sﬂ = ﬁi’,v[]v,s.y =pi',Sp b Pi.v[h.s,~ (10)
szﬂ vasﬂ

Notice that (10) is obviously satisfied if p;,s, = 0. Equation (10) there-
fore holds for all 7, ¢/, B, .

We shall show that if all the collapsed sets of states S, are not single
entry sets, relation (10) is a necessary and sufficient condition for the new process
Y(m) = f(X(m)) to be Markovian. Since the necessity has already been
proven, it is only necessary to prove it sufficient. Let Cgqs, be the
common value of

E Pi,vpv,ﬂ,/pi,Sp (11)
ve8g
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for all 7 for which p; 55 > 0. Now

PIYA) = ay, . . ., ¥(n) = a)
= 2 Wihig P PiaaSa,
tkesak
2 wipis,,
_ eS8y,
- 2 wi 2 w"—— CSaz,Sa’ - ' : Csan—l’san
(L eS8y,

il

PlY(1) = au]P[Y(2) = o ¥(1) = e - - -
PlY(n) = an|¥(n — 1) = ana] (12)

so that ¥(m) is Markovian. Notice that the transition mechanism from
time 2 on is stationary since

Csps5 = PlY(m + 1) = B[Y(m) = o] (13)

for m > 2. If the transition mechanism is to be stationary for all time,

that is, for time 1 also,

Z wipis,/ X wi= Cs, s, (14)
1’&801

768y,

must hold for all w; > 0. This leads to a condition somewhat more
stringent than (10), namely for all o, 8

pi,Sﬁ = CSa,Sﬁ (1 5)

when #eS,. Condition (15) had already arisen in some work of B. Rankin
[61] and a number of aggregation problems as they arise in econo-
metrics [65]. One can readily see that condition (15) is more restrictive
than (10). For if given any 8

bii = Qi,sp0i (16)

for all 7 and jeSs relation (10) is satisfied while (15) need not be.

The corresponding problem in the case of a stationary Markov
chain, that is, whether a function of a stationary Markov chain is
Markovian, does not appear to have a simple answer generally. How-
ever, one can give a complete answer for certain special types of chains.
Notice that we do not ask that the Markovian property be preserved
for any initial distribution, only for an invariant initial probability
vector. If the chain is irreducible there can be at most one such vector.
Let P be the transition probability matrix of a chain and p a left
invariant probability vector of P. Assume that all the components of p
are positive. Let D be the diagonal matrix with its /th diagonal entry p;.
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A chain with transition matrix P and stationary instantaneous probability
distribution p is said to be reversible if

DP = P'D. (17

This is an appropriate name since relation (17) implies that the back-
ward and forward transition probabilities are the same

P(X(m + 1) = j|X(m) = i) = P(X(m) = j|X(m + 1) = i). (18)

For such chains evolution forwards and backwards in time are statisti-
cally indistinguishable. We shall show that for reversible chains relation
(15) is a necessary and sufficient condition for a function ¥Y(m) = f(X(m)) of the
chain to retain the Markovian property. The sufficiency is already apparent.
A demonstration of the necessity of the condition is only required. For
convenience, the computation is carried out in the case of a chain X(m)
with a finite number of states. Let u be the number of states of X(m) and
v < u the number of distinct sets of states that f collapses the X state
space into. We introduce » X z and u X v matrices A, B as follows.
The elements of B are of the form

by = |1 if 7eS; (19)

0 otherwise
while
A = (B’'DB)-!B'D. (20)

The n-step transition probability matrix of the ¥(m) process is of the
form
QoA e @)
¢ = P(Y(t +n) = S|Y(t) = S).

If Y(m) is Markovian, the Chapman-Kolmogorov equations are
satisfied by the Q™ and in particular we must have

Q(z) = [Q(l)]2 (22)
or
AP(I — BA)PB = 0. (23)
But this implies that
B'DP(I — BA)PB = 0. (24)

Because of the reversibility of the X{(m) process this last equation can
be written as

B’P'D(I — BA)PB = 0. (25)



64 Random Processes
The matrix D(I — BA) is positive definite so that
DI — BA) = R'R (26)

for some « X u matrix R. Thus (RPB)'(RPB) = 0 and hence RPB = 0.

But then
R'RPB = D(I — BA)PB =0 27)
and hence
(I — BA)PB = 0. (28)

This last equation is simply relation (15) written in matrix notation.

e. Problems

1. Show that if X, n = 0, 1, 2, . . . is a Markov chain, then
PlX,, = i|X,, =15, . . ., Xy, = ix] = P[X,, = i1|X,, = 45]
ifny > ny > - - - > ny. This is equivalent to the Markov property
for a chain as stated in this chapter.

2. Let P be a transition probability matrix with column sums equal
to one. Let x be a probability vector and y the probability vector
generated from x by y = xP. Show that the entropy of y is greater
than or equal to that of x. What happens if the condition that
column sums equal one is relaxed?

Show that there is no invariant probability vector for

o N—igN /(5 — o)t ifj >4
bii = 0 otherwise.

3

.

4. Find the eigenvalues of the transition probability matrix

0 0 1 I
0 0 %
i % 0 0
%4 Ja 0 0

5. In the case of a branching process {X,} show that Var(X,;1)
= pVar(X,) + p?"o? where p is the mean and o? the variance of

the ¢; distribution.

6. Let Xj, X, . . . be independent random variables with common
distribution P(X =j) = f;, =0, 1, 2, . . . . Let N be a non-
negative random variable independent of the X’s with distribution
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10.

1

P(N=m) = gm, m=0,1,2, . ... Show that the distribution
of the sum X; + Xo + - - - + Xy = Sy (the sum of a random

number of random variables) is given by P(Sy = k) = 3} G fi®
m=0

where f;* is the k-th element of the m-th convolution of the f;
sequence with itself. Find the generating function of the probability
distribution of Sy.

. Consider an insurance company. Suppose that the number of

deaths of people insured by the company in time ¢ is given by a
Poisson distributed random variable with mean A¢{. Further, let
the amount of insurance to be paid up by the company on the
death of an insured person be given by P(X = j) = f; in terms of
dollars j. Assuming independence, find the generating function
of the distribution of Sy, the total amount of insurance paid out
by the company in time £ The probability distribution of S is
called a compound Poisson distribution.

. Show that for any positive integer n there is a probability distribu-

tion {gi} such that the sum of » independent, identically distrib-
uted random variables with this distribution has the distribution
of Sn referred to in the previous example. For this reason, a
compound Poisson distribution is called infinitely divisible. See the
book of Kolmogorov and Gnedenko [23] for a detailed discussion
of infinitely divisible laws.

. Consider a random walk with reflecting barriers at 0 and a. Let

-

12.

13

.

p® =PX,=j),j=0,1,..., a Examine the behavior of
pi™ asn— . Does this behavior depend on the initial distribution?
We say 0 and a are reflecting barriers if po,1 = pa,a—1 = 1.

Consider the preceding problem with an absorbing barrier at 0
and a reflecting barrier at a.

Consider a finite state Markov chain whose transition matrix
has only positive elements. Show that all the states are persistent.

What is the left invariant probability vector of P if P is an irreduci-
ble transition probability matrix with column sums equal to one?

Let the first column of the transition probability matrix P of a
Markov chain be {go, q1, . . .} with p;i41 =1 — gi for i = 0,
1, . . . . When is the chain irreducible? Show that if the chain is
irreducible, the states are transient if and only if 2¢; < «. Find
out when the states are null and when they are persistent.
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14. Show that if j is a recurrent periodic state of period ¢ > 1, then
™ = 0 if m is not a multiple of ¢ and

t

p(st) —_—
7
J W

as s — ® where p; is the mean recurrence time of state j. Hint:
Apply the Erdés, Feller, Pollard theorem to f{*# and p{P.

15. Suppose P is an irreducible transition probability matrix. Show
n—1

1
that lim i exists and is equal to 0 if the states are transient
n-—>r o
m=0

and 1/y; if the states are recurrent.

16. Let P be a transition probability matrix (not necessarily irreduci-
n-—1

ble). Show that lim - L e exists for all 7, j. Evaluate the limit.

n~—>» o
m=0

Notes

1. Instead of using (a.4) to define Markov chains, property (a.9) or that given
in example 1 could have been employed. In fact, these other approaches are more
usual and might be considered more natural. In spite of this, property (a.4) ap-
peared to be more convenient to use at this point. Specific types of Markov chains
of interest are discussed in a variety of books on chains. We mention the book of
Frechét [19] which discusses some of the early literature.

2. Section b is given because it was felt that an analysis of transition probability
matrices from the point of view of their eigenvalue structure was proper as a valu-
able complement to the purely probabilistic approach. This is an analysis of
matrices with non-negative elements of finite order and was originally developed
in the work of Perron and Frobenius (see Gantmacher, vol. 2 [21]). Row sums of
the matrices are not assumed to be equal because this condition is not required for
the characterization of the eigenvalue structure. Matrices with non-negative ele-
ments have recently attracted interest in the analysis of flow networks. The element
a;,; can be interpreted as the mass flowing per unit time from location i to location j.
Row sums equal would correspond to conservation of mass. Row sums unequal
could be accounted for by creation or destruction of mass. See [5] for an interesting
application to reactor problems. The paper of D. Rosenblatt [64] in part discusses
the application of such matrix representations in the analysis of economic “input-
output” problems.

3. The basic results on Markov chains presented in section ¢ appear to be due
to Kolmogorov [45] and Doeblin [10]. The presentation is essentially that given by
Feller [17]. It should be noted that the terminology for states of a chain varies from
one presentation to another. The terminology in Feller’s second edition differs
from that given in his first edition. Chung’s terminology [8] differs from that given
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in Feller. We have used the terminology given in Feller’s first edition. The state
classification given in his second edition is a little unpleasant since periodic states
of an ergodic chain (see section b of Chapter V) are not called ergodic states. A
much more extensive treatment of infinitc state Markov chains and a discussion
of the historical background can be found in Chung’s monograph [8].

4. The question of necessary and sufficient conditions for a function of a general
finite state Markov chain to be Markovian is still open. Further results on related
problems can be found in {7] and [68]. Related aggregation problems are considered
in the paper of D. Rosenblatt [65]. Recent work on conditions for a function of a
general state Markov process with stationary transition mechanism to be Markovian
can be found in the book of M. Rosenblatt [A14].



PROBABILITY SPACES WITH AN
INFINITE NUMBER OF SAMPLE POINTS

a. Discussion of Basic Concepts

Thus far, we have concerned ourselves with probability spaces that
contain a finite or at most a denumerable number of sample points.
However, the natural probability spaces in many contexts will contain
a nondenumerable number of sample points. The simplest situation of
this sort arises when the result of an experimental measurement may be
any real number, for the set of real numbers is nondenumerable
(see [1]). Much of this chapter will be concerned with the introduction
of concepts and tools relevant in such a general context. This presenta-
tion is motivated to a great extent by the discussion in the denumerable
case. Sigma-fields and probability set functions will be introduced as
they were in that simpler domain. Generally our object will be the
understanding of these concepts and tools rather than a concern with
subtleties and proofs. A detailed derivation of the results we present
and discuss can be found in many books on measure theory (see [29],
[53]). Typically measure theory is used as a basic tool in setting up the
foundations of probability theory.

Consider an experiment. As before, there is a space € of points
(“sample points”) w, where the points are to be regarded as the ele-
mentary outcomes of the experiment. A collection § of subsets of Q
with the following properties (just as before) is called a sigma-field or
Borel feld.

7 1. If a denumerable collection of sets Ay, As, . . . €F then the union
U A5,
i=1
2. The set  is an element of F.
3. Given any set A€, the complementary set A is an element of 5.

In the case of an experiment with at most a denumerable number of
elementary outcomes, it was natural to take the class of all subsets of @

as the sigma-field of events. In fact, we would have to do so if the field
68
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of events is to contain the sets consisting of single points of the space
(the sample points). Since the events are to have well-defined prob-
abilities, a probability function (such a non-negative set function is
often referred to as a measure) on a sigma-field should satisfy the follow-
ing conditions:

2 1. The probability function P is well defined on all sets AeF and for such A

0< P(4) <1,
2. P(Q) = 1.
3. Given any denumerable collection of disjoint sets Ay, Az, . . . €F
P(U 4) = 2 P(4,). 1)

Property 2.3 is commonly referred to as the countable additivity or
sigma-additivity of the measure P. If Q is a space with a nondenumer-
able set of points w, the sigma-field of all subsets of £ will generally be
too large a field to take for &. For example, if 2 is the set of real numbers
w, 0 < w £ 1, there is no probability function P defined on all subsets
of Q that agrees with the ordinary notion of length on the subintervals
of @ (see [29]). It is then natural to take F as a smaller subfield that is
sufficiently rich to include all sets consisting of single points and on
which a probability function can be defined.

A probability space, as before, is a triple (,5,P) with Q the space of
points, § a sigma-field of subsets of @ and P a probability function defined on the
sets of §. The sets of the sigma-field § are called measurable sets or events. A
class of real-valued functions X(w) on © consistent with the sigma-field
is of especial interest. These are the functions X(w) such that every
set of the form {w|X(w) < »} with y real is an element of the sigma-
field §. Such functions X(w) are called measurable functions or random
variables. Notice that for real precision one ought to use the phrase
“measurable functions with respect to the sigma-field §.”

Often it is natural to consider the sigma-field generated by a specific
collection © of subsets of Q. This sigma-field § = F(C) is the smallest
sigma-field containing the collection of sets ©. Generally there will be several
sigma-fields containing €. As an interesting example consider  as the
set of points in 4-dimensional Euclidean space, that is, &-tuples of real

numbers w = (w1, . . . ,w;). Let € be the collections of subsets of Q
of the form

{wlwy < x1, « 00, we < xd )
with x;, . . ., x; any k real numbers. The sigma-field ® = F(€)

generated by € is called the sigma-field of k-dimensional Borel sets. A
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function X(w) measurable with respect to the sigma-field ® of Borel sets is called
a Borel function. Notice that a Borel field (sigma-field) need not be the
Borel field of Borel sets. The discussion given here is also valid for a
countably infinite dimensional space.

The family of functions X(w), measurable with respect to &, has
some very interesting properties. We enumerate these properties as
follows:

3 1. Given any two measurable functions X(w), Y(w) and any two real
numbers a and B, the linear combination aX(w) + BY (w) is a measur-

able function.
2. The limit (if it exists) of a sequence of measurable functions X,(w),
n=12 ...,
lim X, (w) 3)
n— o

is a measurable function.

3. Given k measurable functions X1(w), . . . , Xi(w) and a Borel func-
tion Y(x1, . . . ,xx) of k (real) variables, the composite function
Y(X\(w), . . . ,Xi(w)) is then measurable.

These properties of the family of measurable functions indicate that
it is closed under certain basic and natural operations. Consider the
function
1 if weAd
0 otherwise.

I(w) = { @)

This is obviously a measurable function if 4eF This function I,(w) is
called the indicator function of the set 4. Let 4,, . . . , 4, be sets of
F and «;, . . ., o any real numbers. By repeated use of property 1
of measurable functions, it is clear that

2. a;ily,(w) (5)
7

is a measurable function.

Let us now sketch the definition of the integral (if it exists) of a
measurable function or correspondingly in probabilistic language, the
expectation of a random variable. We do this first for a non-negative
measurable function X(w). The sets

Ay = {w]j/2* < Xw) < (j + 1)/2%}, (6)

withi=0,1,...,k@*—1)and k=1,2, ..., are measurable
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sets. Consider the simple approximating function

Y L L@ = %) %
J
Notice that ’lcim Xi(w) = X(w). It is natural to take the integral
I X (w) dP (8)
of Xi(w) as
Z 5 P(4r). ©)

J

Clearly the sequence of values (9) is nondecreasing. If the limit of the
values (9) is finite, we say that X(w) is integrable and take

JX(@)dP = lim [Xi(w) dP. (10)

If X(w) takes both non-negative and negative values, introduce the
non-negative and negative parts of X(w)

X(w) = max (X(),0)

X_(w) = Xi(w) — X(w). (11

We say that X(w) is integrable if its non-negative and negative parts are both
integrable and in that case set

JX(w) dP = [X(w) dP — [X_(w) dP. (12)
The probabilistic notation for expectation of a random variable X(w) is
EX(w) = [X(w) dP. (13)

The integral so defined has the following natural properties:

4 1. Given any two integrable functions X(w), ¥Y(w) and any two real num-
bers o, the linear combination aX(w) + BY(w) is integrable and its
integral is given by

JlaX(w) + BY(w)] dP = af X(w) dP + Bf¥(w) dP. (14)

2. Given a sequence of functions X,(w), n =1, 2, . . . , bounded in
absolute value by the integrable function Y(w), with limit im X.(w)
= X(w), then

[X(@w) dP = lim [X,(w) dP. (15)
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The second property of integrals referred to above can be strengthened
in the following way. Let X, (w), n =1, 2, . . ., be a sequence of
integrable functions with X(w) = lim X,(w). Let the set

n=

B, = {w]|Xu(w)| 2 a}. (16)
The functions Xn(w) are said to be uniformly integrable if
fB | X ()| dP — 0 (17)
uniformly in n as a — «. One can show that if Xo(w),n = 1,2, . . . , are
uniformly integrable, then
lim [|X(w) — Xa(w)|dP = 0. (18)
N—~—> 0

Given a sigma-field § and a probability measure defined on it, one often
wishes to consider any subset of an § set of probability zero as measur-
able and assign to it probability zero. This implies that one ought to
consider the completed sigma-field &, generated by § and the subsets
of § sets of measure zero. Every set of the completed sigma-field §,
differs from an appropriately chosen set of & by at most a subset of an
F set of measure zero. Naturally one takes the measure of the F, set
(considering now an extension of the measure on § to §,) as equal to
that of the § set which approximates it to within a subset of an F set
of measure zero.

At times it will be natural to deal with measures somewhat more
general than probability measures. Such a measure, m(4), will satisfy
all the conditions of 2 except perhaps for 0 < P(4) < 1, P(Q) = 1.
If these are replaced by 0 < m(A4), m(Q) < o we call the measure a finite
measure. Here the measure of the whole space may be some non-nega-
tive number other than one. This may be further generalized by assum-
ing Q can be decomposed into a countable number of disjoint sets on each of
which m acts as a finite measure, where the measure of the whole space need not
be finite. Such a measure is called a sigma-finite measure. The measures we
deal with in this book will be at most sigma-finite. The measure of the
whole space Q for such a sigma-finite measure m may be infinite.

A collection @ of subsets of Q satisfying 1 with condition 1 replaced by the
weaker requirement

1" If a finite collection of sets A, Az, . . . , AyeC
k
then the union \J A,
i=1
1s called a field.
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Often one may be given a non-negative set function m defined on a
field €. It is of great interest to find out when m can be extended to a
measure defined on the sigma-field (@) generated by the field €.
A theorem due to Carathéodory ([53] p. 87) indicates that such an
extension can be carried out if m already acts like a measure on the
field €, namely m(4) > 0 for AeC, and for any countable collection of
disjoint sets Ay, Aa, . . . , €€ with \UA;C (notice that this assumption
would not have to be made if € were a sigma-field since it would auto-
matically be true) m(\U4;) = Zm(4;). This theorem further assures us
that the extension is unique on F(€) if m is sigma-finite on €. Further,
any set of the sigma-field (€) can be approximated arbitrarily well
in measure by sets of the field € generating $(@) in the following sense.
Given a set AeF(€) and any fixed € > 0 there is a set BeC such that the
symmetric difference of the sets 4 and B

AOB=(A—B)U (B — 4) (19)
(the set of points in either 4 or B but not both) has measure
m(AOB) < ¢ (20)

if m(4) is finite.

Let us examine some of the remarks and results spoken of in the
preceding paragraphs. First, consider taking @ as the set of real num-
bers w, 0 < w < 1. Let @ consist of intervals of the form

fwla <w < B},a<B (21)

and sets formed by taking unions of a finite number of such intervals.
It is clear that the collection of sets @ is a field. As already remarked
above the sigma-field (@) generated by € is the sigma-field of one-
dimensional Borel sets. Our object is to define a measure on the Borel
sets that agrees with the ordinary notion of length for intervals. Every
set of @ can be represented as a union of disjoint intervals

Ulwle; < w < Bi}, ai < Ba. (22)

Simply set
m(\U{wlae; <w < B}) =2 (8 — ). (23)

One can readily see that m does act like a measure on €. It therefore
can be extended uniquely to a measure on the one-dimensional Borel
sets. Notice that this measure is a probability measure since m(Q)
= m((0,1]) = 1. The completion of the sigma-field of Borel sets F(C),
F.(@), is commonly referred to as the sigma-field of Lebesgue sets.
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The extension of m from F(€) to F.(@) is called Lebesgue measure. We
could equally well have taken € as the set of all real numbers and carried
out the construction given above. $(€) would then consist of the Borel
subsets of the whole real line rather than the interval (0,1] and a corre-
sponding statement would hold for F.(C). Notice that Lebesgue
measure on the real line is a sigma-finite measure, not a finite measure.
We now make a few remarks on product spaces. Suppose £,$2; are
spaces of points wy,w, respectively. Let F; and §; be sigma-fields of sets
of @; and @ respectively with mym, measures on the sigma-fields
F1,52. The space of points w = (wy,ws) with wieQ;,wqels is called the
product space €; X €. Consider the collection of sets of the form
{w = (wi,ws)|wiedr,weds} = A1 X Ay with 4,4, any two sets of
%,,F. respectively. The sigma-field generated by sets of this collection
is the product sigma-field §; X .. Generate the measure m = m; X m2
(called the product measure generated by myms) on F; X F2 in the
following manner. Given any set 4y X As with 4,e5;,45¢F,, let

m(Ar X As) = my X ma(A1 X Az) = mi(A1)ma(4s). (24)

Given any finite union of disjoint sets AP X AP, APeF;, APeFs,
j=1,...,nset

m( (AP X AP)) = 5 my(A9)m(45). (25)
i=1 i=1

The collection of finite unions of sets of the form A; X A;, A5y,
Aq€Fs, is a field and it can be shown that m is countably additive on this
field. One can therefore extend m to a measure on the sigma-field
F1 X F, generated by this field using Carathéodory’s theorem. The
same procedure can be used to construct product spaces, product fields,
and product measures generated by any finite number of spaces,
fields, and measures. Notice that §; X F»is not a completed sigma-field
with respect to my X mo.

Let f(w) = f(wi,ws) be a function measurable with respect to
F; X F2. One can show that for each fixed w,, f(w,ws) is measurable
with respect to &; in w; and for each fixed w; measurable with respect to
&, in w,. Assume that f(w) is integrable with respect to m = m; X ma
on €; X Q. A result commonly referred to as Fubini’s theorem states
that the integral of f with respect to m; X m, can be written as an
iterated integral

[alxmf(w)ml X ma(dw) = ./m {/;hf(wl,wz)mz(dwz)} my(dwy)
= [92 { .[mf (wy,wz)m 1(d'w1)} ma(dws). (26)
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The equation (26) implies that f(wi,ws) is integrable with respect to
my for almost every point ws and is integrable with respect to m, for
almost every point w;. If f(w) is nonnegative, equation (26) holds
without the assumption of integrability. If one of the integrals is
infinite, all of them are.

There are several notions of convergence for a sequence of random
variables X,(w), » =1, 2, . . ., that are of interest. We say that
the sequence of random variables X,.(w) converge almost everywhere or converge
with probability one to the random variable X(w) if

X(w) = lim X,.(w) 27)
n—s 0
except possibly on a set of w points of probability measure zero. The random
variables X,(w) are said to converge in probability to X(w) as n — o if for
every € > 0
lim P(|Xn(w) — X(w)] > €) = 0. (28)
n— o

Whenever a condition is satisfied at all points outside of a set of proba-
bility or measure zero, it is referred to as a condition holding almost
everywhere or almost surely.

Convergence almost everywhere implies convergence in probability.
However, the converse does not hold as is indicated by the following
example. Let @ be the interval [0,1] with § the Lebesgue subsets of

n
the interval and P(-) Lebesgue measure on these sets. Set s, = = 1/j.
1

Let

_ |1 when s, < u < spa
falw) = {0 otherwise (29)
0< u< »,and
Xu@w) = 2 fa(j+w),0 <w < 1. (30)
i=0

See the accompanying figure 4.1 for a graph of f,(x). The sequence of
random variables X,(w) certainly converge in probability to X(w) = 0,
but they do not converge almost everywhere. A third mode of con-
vergence is that of convergence in mean square. Let X3, Xo, . . . , X.
be random variables with finite second moment. The random variables X, con-
verge to X in mean square as n — o if
lim E|X, — X|?—0. (31)
n— o
A simple application of the Chebyshev inequality indicates that con-
vergence in mean square implies convergence in probability. A Cauchy
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convergence criterion holds for each of these modes of convergence.
If Xo — X —0 as nym — o almost everywhere, in probability or in mean
square, there is a random variable X such that X, — X in the corresponding
sense as n — . This result is referred to as the Riesz-Fisher theorem
when one is dealing with mean square convergence. We have noted in
section e of Chapter II that continuous functions on a finite closed
interval can be uniformly approximated by polynomials. Actually one
can show that a square integrable function on a finite interval can be
approximated arbitrarily well by polynomials in mean square. Problem
10 of Chapter II indicates that a continuous function f on {—m,r]
with f(r) = f(—m) can be uniformly approximated by finite trigo-
nometric series in cos £x, sin £x. Just as in the case of polynomial approxi-
mation any square integrable function on {—#,r] can be approximated

1 1
0 ! 2 Sn sn+l 3

Fic. 4.1. Graph of function f,(u).

arbitrarily well in mean square by finite trigonometric series. An
analogous result holds for a square integrable function of several
variables on a finite interval. To be specific, suppose f(x,y) is a square
integrable function on —7 < x, y < 7. Then f(x,y) can be approxi-
mated arbitrarily well in mean square by polynomials in x and y or by
finite multiple trigonometric series in x and y. We shall make use of this
remark in deriving a representation for certain random processes in
section ¢ of Chapter VIIIL.

Let X)(w), . . . , Xi(w) be k random variables on the probability
space (2,5,P). Any set of the form

{lel(w) < X1y « v vy "Yk(w) < Xk} (32)
with x3, . . . , x; real is an element of . This implies that the function

F(xy, . . . 1) = Pl{w]|Xi(w) < %, . . ., X(w) < x}] (33)
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is well defined for all x4, . . . , x;. This function is called the dis-
trtbution function of the random variables X3, . . . , X;. Let us note the
properties of such a distribution function. First of all

(i) OSF(X],..-,xk)SI
(ii) Hm Flxy, . . o) =0 =1, ...,k (34)
(iii) lim  F(xy, . .. ) =1,

Ty o any Te—r®

Furthermore F is nondecreasing in each coordinate x; since the differ-
ence in the i-th variable

AnF(xy, o oo yxk) = Flxy, o o oy ximyy x5 by Xigny « o .y XE) (35)
— F(x1, « o JXio1,XXig 1y -+« 4XE)

= Pl{w|Xjw) <x,7=1, ..., kj#ix<Xw) <xut+h}]>0
for 7; > 0. In fact the k-th order difference

AhlAh? . AhkF(Xl, e ,xk)
= Pliwls < X) S s+ hyj=1,. .., k120 (36
with Ay, . . ., A 2> 0. Further F(x;, . . . ,x;) is continuous to the

right in each variable separately, that is,

lim F(xl, DRI £ R 0) 2 70 X ™ PR ,xk)

yi—ri+

= F(xl, o 0.y X1y X + 0, Xigly o+ o xk)

= F(x;, PEECTERRPY £ A P 7% A1 PRNPEENIIN ,xk). (37)

As we have seen, a distribution function satisfies conditions (34) to (37)
(notice that (36) is obviously redundant when & = 1). One might ask
whether the converse is also true. It will be shown that any function
F(x1, . . . ,x) satisfying conditions (34) to (37) can be considered
the distribution function of an appropriately constructed set of
random variables. Let @ be the space of k-dimensional points w =
(w1, . . . ;wi). Consider the field € consisting of intervals of the form

I={w|x.~<w,~§x,~+lzi,i=1,...,/c},lziZO, (38)

and all unions of a finite number of such intervals. Every set of @ can
be expressed as a union of disjoint intervals

UL = Ulw|x® < w; <« +hD 0 =1, . . .k} (39)
Set
m(\JIL) = ZA;L,(;) s A F(x, L x).
2
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The non-negative set function m acts like a measure on € and hence
can be extended to the sigma-field (the k-dimensional Borel sets)
generated by @ using Caratheodory’s theorem. The extended measure
m is clearly a probability measure and the random variables Xi(w) =

wy, i=1, ...,k have F(x;, . . . ,x) as their joint distribution
function.

Take X:(w), . . ., Xi(w) as random variables on a probability
space. If g(x1, . . . ,xx) is a Borel measurable function of the real
arguments xi, . . . , xx we have already remarked that Y(w) =

g(Xi@), . . . ,Xi(w)) is a random variable on that probability space.
The expectation of ¥, if it exists, is given by

EY(w) = Eg(Xi(w), . . . ,Xu(w))
= [g(Xi(w), . . . ,Xi(w)) dP. (40)

If g is a continuous function of x;, . . . , x, the expectation-can be
written as a Riemann-Stieltjes integral with respect to the joint dis-
tribution function F(xi, . . . ,x) of the random variables X;(w),
.« ., Xi(w), just as in the discrete case,

EY(w) = Eg(Xi(w), . . . ,Xx(w))
= / .. /g(xl, e yxn) dF(xy, .. L ). (41)

e

Often, it is more convenient, for ease in computation, to write expecta-
tions in this form.

Here are a few simple distribution functions of random variables
with a continuous range of values that are of considerable interest.
The first of these is the distribution function of a uniformly distributed
random variable. A random variable is said to be uniformly distributed
on [a,b], a < b, if its distribution function has the form

0 fx<a
x—a .
F(x) = - falx<b (42)
1 otherwise.

Notice that the derivative f(x) of F(x) (called the probability density

if it exists) is given by

f(x) — b—_‘—' fa<x<b (43)
0 otherwise.
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We encountered a more interesting class of distribution functions in our
discussion of the central limit theorem (see section II.e). These are
the normal distribution functions. A random variable is said to be nor-
mally distributed with mean m and variance o2 > 0 if its distribution

function is
z  _(u—m)?

F(x) = 712—;-;/ T, (44)

~x

Notice that the mean of such a random variable is

1 ©  _a-mr
EX = o xe 2 dx=m 45
@ = / 5)

and its variance is given by

1 @ _(z—m)t
EX(w) — m)? = —— x —m)% 2 = g2 46)
@) =m = [ = m (
If X(w) is a normally distributed random variable with mean zero and
variance one, the derived random variable Y(w) = m + oX(w) is
normally distributed with mean m and variance o2 Of course, a random
variable with mean m and variance ¢ = 0 is equal to m with proba-
bility one, that is, the total probability mass is concentrated at the
point m.

The random variables X1(w), . . . , Xx(w) are called jointly independent
if
P(X1(w) < x1, Xo(w) < x5 . . ., Xi(w) < xx)

= P(X1(w) £ x)P(Xo(w) < x3) + - - P(Xi(w) < xa) (47)

for any set of £ real numbers x1, . . . , xx. This implies the following
much stronger property. Given k£ Borel measurable functions gi(x1),
. ., &(xx), the random variables

aXi@)), . . ., ge(Xu(w)) (48)

are independent if X,(w), . . . , Xi(w) are independent. Notice that
the property of independence can be immediately rewritten in terms
of distribution functions

F(xy, . . . ) = Fi(x1) - -« Fi(xi) (49)

where Fi, . . ., Fy are the distribution functions of the random
variables X;, . . . , Xi taken one at a time (commonly referred to as
the marginal distribution functions of the random variables X,
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. . ., Xi). Thus, if the random variables are independent, the joint
distribution function of the random variables is the product of the
marginal distribution functions. An analogous property holds for the
expectation of the product of independent random variables: the expectation of the
product is equal to the product of the expectations of the individual random
variables

EX:(w) - - - Xa(w)] = j L f ﬁ 5 dF(x1, . o . xR

i=1
k
= / Cee / H xi dFy(x1) + « - dFu(xx)
k =t k
=1 [ wdre) = [T EXi). (50)
=1 i=1

b. Distribution Functions and Their Transforms

Given a random variable X(w), let ¢(¢) be defined as the following
Fourier-Stieltjes transform of its distribution function F(x)

o(t) = E exp (itX(w)) = E[cos (tX(w)) + ¢ sin (¢(X(w))]

. 1)
= /_me"’dF(x).

This transform is commonly called the characteristic function of X(w).
Notice that

o) = [7 aF () =1 @)

and

o] < [l aFG) = [~ ape) = 1. 3)

Further ¢(¢) is a continuous function of ¢. Given any finite number of ¢
points #;, . . ., & and complex numbers ¢y, . . ., ¢ consider the
quadratic form

’c" -

= . C;(‘jcp(l; - t,‘). (4)

)=

The quadratic form is positive definite since

Yatoli—t) = Yed, [ db@ = [|Y el a2 0. ()

47
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It is natural to ask for conditions on a function ¢ ensuring that it be a
characteristic function, that is, the Fourier-Stieltjes transform of a
distribution function. A theorem of Bochner [53] states that the
necessary conditions that ¢ be continuous and (2), (5) cited above hold
are also sufficient for ¢(f) to be a characteristic function.

The characteristic function of a random variable uniformly dis-
tributed on [a,b] is

o =yt [Mean = 0 = o)/ — o), ©)

The characteristic function of a normally distributed random variable
with mean m and variance o2 is also given readily by

1 © _(x—m)?
o) = — [ g B dy @
Mo J -
= eimt-—v?t’ﬂ'

If ¢(#) is the characteristic function of the random variable X, the
characteristic function of X + b (a,b constants) is

E(e'it(aX-f—b)) e E(eitbeiatx) = eitbso(at). (8)
Given random variables X;(w), . . . , Xi(w), one can introduce a
joint characteristic function (¢, . . . ,f) of the random variables

in an analogous manner as follows

<p(ll, e ,lk) = ECXP (l i thj(w))
i=1
= [ . ” . fexp (izktjxj) dF(x1, . . . x). (9)
— 1

k

The multidimensional characteristic function satisfies conditions that
parallel those mentioned in the one-dimensional case above. If
Xi{w), . .., Xi(w) are independent, the functions exp(itiX1),

., exp(itzXs) are independent. But this implies that the joint
characteristic function of independent random variables Xy, . . . , Xk

k
oty . . . tx) = E [n €xXp (ilej)]
L .

k
=[] Eexp (i;X;) = ¢1(ts) - - - oxlte)  (10)
1
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is equal to the product of the characteristic functions of the individual
random variables ¢;(¢1), . . . , ¢x(tx). Thus, the characteristic function

k
of the sum ¥ X; of independent random variables is the product
1

k
[T (). 11)
1

There is a onec-one correspondence between characteristic func-
tions and corresponding distribution functions. The definition of ¢(#)
indicates how a characteristic function is given in terms of the corre-
sponding distribution function. There are inversion formulas indicating
how the distribution function can be recovered from knowledge of the
characteristic function. We shall encounter a few of these inversion
formulas later on.

Often, it is more convenient to carry out a discussion in terms of
characteristic functions rather than distribution functions. This is so
in part when considering jointly normally distributed random variables.

We say that the random variables X1(w), . . . , Xu(w) are jointly normally
distributed if every linear combination of the random variables
HXi(w) 4+ - - -+ GXk(w) (12)

is a normally distributed random variable. Thus, a definition of k-dimensional
normality is introduced in terms of one-dimensional normality. The

means and variances of X3, . . . , X} clearly exist. Let them be denoted
by my, . .., mg and %, . . ., o2 respectively. The mixed central
moments

Tuw = E(X, — m,) (X, — m,) wwo=1, ...,k (13)

are called the covariances of the random variables and they exist by
the Schwarz inequality since

l"u,vl < EI(Xu - mu)(Xv - mv)l = ”(‘Xu(w) - mu)(Xv(w) - mv)l dP
< U1 Xa@0) — mal? dPf|Xo(w) — mo? dP% = 0uo. (14)

The covariance matrix of the random variables
R=(uuov=1 ...,k (15)
is positive definite since
2 curunts = E[Z ¢.o(Xu — my) (X, — my)]
u,v uv
= E|Z (X, — mu)|? = 0. (16)
u
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Notice that the positive definiteness of the covariance matrix is gen-
erally true. It does not stem from normality. We shall now obtain the
joint characteristic function of the jointly normal random variables
Xy, . . ., X Consider the random variable

Y=tX1+ - + X (17)

By the very definition of joint normality, the random variable ¥ is
normal with mean

EY = tim + M "l' tymy = tm’ (18)
and variance
E(Y — tm’)? = E[t(X — m)’]?
= tE(X — m)'(X — m)t’
= tRt/, (19)

where t, m, X are the row vectors of #;’s, m/’s, and X7s respectively. The
characteristic function of Y is then

oy(r) = E(e"Y) = exp { —W7%Rt’ + irtm'}. (20)
However, the joint characteristic function of X1, . . . , Xi is given by
k
iNtiX;
oty . . . tr) = oy(1) = E(¥) = E(¢! )
= exp {—L4tRt' + itm'}. (21)

Of course, one would like to invert this expression if possible. Let us
assume that R is nonsingular. This means that R is a positive definite
matrix. The matrix R has a unique positive definite square root R*.
Let R—% be the inverse of R*. Consider the new #-vector Z of random

variables Z;
Z = (X — mR*% (22)

The random variables Z; are jointly normal since they are obtained
from the X/s by a linear transformation. The mean of the Z vector is

the null vector
EZ=EX —-mR%*=0 (23)

and the covariance matrix of the vector is

EZ'Z = R-#E[(X — m)'(X — m)]R-%
= R ¥RR% = I. (24)
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The characteristic function of the Z; random variables is thus

k
et .. =exp (=1att'} = [] exp (=}52).  (25)
i=1
But this is the characteristic function of £ independent normally dis-
tributed random variables with mean zero and variance 1. Their
joint density function is therefore

k
gz, o . ) = @%mexp {—% z z}l (26)
j=1

The joint density function of the X; random variables can simply be
obtained by making use of the transformation

z = (x — m)R~%, (27)

The joint density function of the X; random variables is given b)}

flx, oo sm) = (2—7;;;7'2€XP {—1422"}

1 _

= GoFRE P {—2(x —mR-'(x —m)’} (28)

where J = |R|* is the Jacobian of the transformation (27) and [R|
denotes the determinant of R.

Given a sequence of distribution functions F,(x), they are said to converge

to a limiting distribution function F(x) if Um F,(x) = F(x) for every point x

at which F is continuous. It should be noted that the set of points x at
which a distribution function F is discontinuous can be at most count-
able since F is nondecreasing (see [1] p. 85). Such limit theorems are
often of considerable interest. In fact, several theorems of this type
were obtained in Chapter II. If the sequence of distribution functions
F, converge to a distribution function F, the corresponding charac-
teristic functions

ealt) = [ e dFu(x) (29)
converge to the limiting characteristic function
@) = [ 7 e dF (). (30)

A converse of this fact, commonly called the continuity theorem for
characteristic function, holds and runs as follows. If a sequence of char-
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acteristic functions @n(t) converges to a limit function ¢(t) that is continuous at
zero, the limit function @(t) is a characteristic function and the sequence of
corresponding distribution functions F,(x) converges to the distribution function
F(x) corresponding to the characteristic function ¢(t) at every continuity point
of F(x). Thus, one can obtain limit theorems for distribution functions
by proving limiting results for characteristic functions. This is exceed-
ingly handy whenever the characteristic function domain is a more
natural one to deal with. Such is the case generally when dealing with
the distribution functions of sums of independent random variables.
We shall show this by giving an alternative proof of the central limit
theorem derived in Chapter II. The proof given here will make use of
characteristic function techniques. Let X1, . . . , X, be n independent
identically distributed random variables with mean zero and variance
one. Our object is to show that

S x/v/n (31)

is asymptotically normally distributed with mean zero and variance
one. Let the common characteristic function of the X/s be ¢(f). The
existence of the second moment implies that ¢ is doubly differentiable,

¢ = = [T et dF (), (32)

where F(x) is the common distribution function of the X/s. Let us
carry out a Taylor expansion of ¢(f) about ¢ = 0 with error term. Then

) =1+ O+ ¢"0) 5 + o)

2
= 1= 5 +o@® (33)
since

¢0) =i [° xdF(x) = iEX =0

- (34)
§'(0) = — [* xdFx) = —EX* = —1.

Now the characteristic function of (31) is

le(t/vV/m)]"

by the multiplicative property (11) when dealing with independent
random variables. But

et/ v/ = (1= g+ o (5)) - e (35)
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as n — o, The limit function exp (—¢*/2) is the characteristic function
of the normal distribution with mean zero and variance one. An
application of the continuity theorem for characteristic functions
immediately implies the central limit theorem. Of course, this proof
looks simpler and more immediate than that of Chapter II. However,
this is an illusion in part. First of all we are using more sophisticated
techniques. Further, rather nontrivial and unproved results like the
continuity theorem for characteristic functions have been employed.
Earlier in this section, inversion formulas to recover the distribution
function from the corresponding characteristic function were referred
to. The most famous formula of this sort is due to P. Lévy. Let F(x) be
a distribution function and ¢(¢) the corresponding characteristic func-
tion. The P. Lévy inversion formula states that
1 T p—ita — p—ith
F(b) — F(a) = lim — — o(t) dt (36)
Psw 2w |1 24
for any two continuity points a,b of F. Since F has at most a countable
number of discontinuity points and is continuous to the right, this is
enough to determine F everywhere. If ¢(¢) is integrable, F is differen-
tiable with a density function f

F(x) = / " fw) du (37)

and the density function can be given as an ordinary Fourier transform,

16 = 5 [ el (38)

The reader should refer to Loéve [53] for a discussion of inversion for-
mulas for multidimensional characteristic functions.

c. Derivatives of Measures and Conditional
Probabilities

One can regard a measure m as an indicator of a mass distribution
over the space 9, m(4) with 4eF the amount of mass located in the
set A. Consider two measures my,me on the sigma-field §. The measure
my is said to be absolutely continuous with respect to my if for each AeF for which
ma(A) = 0, mi(4) = 0. A basic result of Radon and Nikodym states
that if m; is absolutely continuous with respect to ms,:m; has a deriva-
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tive with respect to ms. Specifically, the Radon-Nikodym theorem
states that if my is absolutely continuous with respect to ma, there is a function
f(w) measurable with respect to F and uniquely defined up to a set of my measure
zero, such that

my(d) = [, fo) dm 1)

for every set AeF. If @ is k-dimensional space with § the sigma-field of -
dimensional Borel or Lebesgue sets and m, k-dimensional Lebesgue
measure, it is common to simply refer to m; as absolutely continuous
if it is absolutely continuous with respect to ms.

In Chapter II we introduced the notion of conditional probability
in the context of a probability space with a finite number of sample
points. It is not obvious how this concept ought to be introduced in a
probability space with an uncountable number of sample points. For
suppose X(w) is a random variable with a continuous range of values
on the probability space. Given a set 4eF, one would like to make the
conditional probability of 4 given X(w) = x,P(4|X(w) = x), meaning-
ful. We call the sigma-field generated by the family of sets {w|X(w) < x}
where x is any real number, the sigma-field $x generated by the random
variable X(w). The sigma-field Fx generated by the random vari-
able X(w) is a subsigma-field of §. If the conditional probability
P(A|X(w) = x) is to be thought of for fixed 4 as a function on @, it is
natural to take it as a function measurable with respect to the subsigma-
field §x. In any case this suggests that we rephrase the problem as one
of defining the conditional probability of an event given a sigma-field
rather than that of the conditional probability of an event given a value
of a random variable since the second can be subsumed as a special case
of the first

P(A|X(w) = x) = P(4|Fx)(w). (2

In Chapter II, it was noted that the conditional probability func-
tion satisfied relation (II.b.3). An analogue of this relation will be
used as the definition of the conditional probability function in general.
The Radon-Nikodym theorem will be heavily used in this definition.

Suppose we wish to define the conditional probability of AeF given
the subsigma-field ® of ¥, P(4|®)(w). Consider the two measures
P(AB) = P4(B) and P(B) on the sets B of the sigma-field ®. Since
0 < P(4B) < P(B), it follows that P, is absolutely continuous with
respect to P on ®. There is then a derivative f4(w) of P4 with respect
to P on ® that is measurable with respect to ® and uniquely defined
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up to an w set of P measure zero. This derivative f4(w) is characterized
by the fact that it satisfies the relation

Pu(B) = P(AB) = [, faw) P ®)

for every Be® and is measurable with respect to &. The conditional probability
of A given the sigma-field G is defined to be f4(w),

P(A|@)(w) = fa(w). (4)

Thus the conditional probability P(4|®)(w) is determined by the
relation

P4(B) = P(4B) = [B P(4|®) () dP, Be®, (5)

and its ® measurability as a function of w. The relation (5) implies that

(i) 0 < P(A®)(w) <1 | (6)
(ii) P(Q|®)(w) =1 7
(iii) for a countable collection Ay, As, . . . of disjoint sets of &

P(U 4i|®)(w) = ? P(4}|®) (w) (8)

except for a w set of P measure zero. Notice that these relations imply
that one ought to be able to treat the conditional probability function
P(A|®)(w) for fixed w as a measure in the sets AeF. There is only one
difficulty. In dealing with a property like (iii) of the conditional
probability function, there is an exceptional w set of P measure zero on
which the relation may not hold. The exceptional w set corresponds to
the countable collection 41, As, . . . . Since there may be an uncount-
able number of such countable collections 4,, we may be confronted
with an uncountable number of exceptional w sets, each of P measure
zero, that add up to a w set of positive P measure. This would be exceed-
ingly unpleasant. At the worst, one would like to have an cxceptional w
set of P measure zero that is the same for all sets 4¢F. Even though this
is not true generally, it can be made to be the case in the contexts of
greatest interest. A detailed discussion of this question can be found in
Doob’s book [12]. Whenever a use of the conditional probability
function as a measure in 4 is required in our discussions, we will be in a
context where it can be arranged. Thus, whenever the conditional
probability function is spoken of as a measure, it will satisfy the follow-
ing requirements: (a) For cach AeF, as a function of w P(A|®)(w) is
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measurable with respect to ®. (b) For each weQ (notice that this is apparently
stronger than “for almost every »” but not essentially) P(4|®)(w) is
a measure on sets AeF. Of course, it must be a function satisfying these
requirements which is consistent with relation (5). The conditional
expectation (or mean) of one random variable Y(w) given another
random variable X(w), or more appropriately given the sigma-field
Fx generated by X(w), is now plausibly given by

E[Y|X(w) = x] = E[Y|5x](w) = [¥ (') P(dw'|5x)(w) ©

the integral of ¥(w) with respect to the measure P(A4|Fx)(w). Thus
E[Y|Fx](w) is a function that is Fx measurable. More generally con-
sider the conditional expectation of ¥ with respect to a sigma-field
® (a subsigma-field of §) not necessarily generated by a single random
variable X. Then E(Y|®)(w) is the integral of ¥ with respect to the
measure P(4|®)(w)

E(Y|®)(w) = [Y(')P(dw'|®)(w). (10)

Notice that relations (5), (10) suggest that the conditional expectation
E(Y|®)(w) satisfies

/B Y(w) dP = [ [ Y (') P(dw'|®) (w) dP
B

= ]B E(Y|®)(w) dP (11)

for every Be®. This last equality is sometimes taken as the defining
relation for E(¥|®)(w) together with the condition that the conditional
expectation be ® measurable. Notice that the conditional probability
P(A|®)(w) can be considered as a special case of a conditional expecta-
tion with Y(w) taken as the characteristic function c4(w) of the set 4

P(A|®)(w) = E(ca|®)(w).

We mention an important property of conditional expected values.
Let ®, ® be two subsigma-fields of § with ® C ®. Then if f is
integrable

E(E(f|®)|®) = E(f|®). (12)

As an example let us consider the joint distribution function
F(x1,x3) of two random variables X3, X» and the probability measure P
on the two-dimensional Borel sets generated by the distribution func-
tion F(x1,x2). The space Q consists of two-dimensional points w =
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(w1,02) with the first component corresponding to a possible value of
X; and the second component a possible value of X, The sigma-field
F is the sigma-field of two-dirnensional Borel sets. Let 4eF. Suppose
we wish to compute the conditional probability of A4 given X,
P(A|X3(w) = wy) = P(A|Fx,)(w) = P(4]®)(w). Here ®& = Fx,. Thus
® is that subsigma-field of F consisting of sets with no restriction on the
first component w; of w. Thus P(4|®)(w) depends on w only through
the second component w; as is to be expected, due to its measurability
with respect to ®. Suppose the measure P is absolutely continuous with
respect to two-dimensional Lebesgue measure. Then, by the Radon-
Nikodym theorem, there is a density function f(wi,ws) > 0 such that

P(4) = [ / Fwr,w02) dwy diws. (13)
A
The probability measure on the sets Be® = Fx, is given by

P(B) = /E [_: flwws) dw; dws. (14)

Assuming  f(wi,ws) > 0 everywhere, the conditional probability
P(A|®)(w) is given by

f(wl,wg) dw;

P(AI®) (o) = itz : (1)
f_ © f(wl,wg) dwl
Notice that
f(wl,wz)/]_: f(w1,w2) dw, (16)

is the conditional density function, that is, the density function of the
conditional probability measure. The discussion of the diametrically
opposite case in which the measure P has a countable number of points
w on which all the probability mass is concentrated parallels that given
in section b of Chapter II.

Suppose we illustrate the example of the previous paragraph by
taking the two random variables X3,X. jointly normally distributed
with nonsingular covariance matrix R and vector of means m. The
joint density function f(wi,w,) of X1, X, is given by

JGoyws) = 2m)7[R|7 exp {=14(w — m)R~Y(w —m)’} (17)
and the marginal density function of X, alone is

folwe) = (2mrag) 7% exp {— (w2 — m3y)?/(2r99) }. (18)
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The conditional density function of X7 given X; becomes

Sonho) = JGrwn) /faleos) (19)
= (e —rd/ra) ] M exp { T [wl—m,— ri <w2—m2)]”}~

T 2(raree— 1)

It is clear that the conditional distribution of X; given X is itself a
normal distribution with mean

my + :—z (ws — ms) (20)

and variance
r11 — 7%2/722. (21)

d. Random Processes

A random or stochastic process { Xi(w),teT} is an indexed family of random
vartables X,(w) on a probability space with the index t ranging over some
parameter set T. Of course, the implicitly given probability measure
determines the joint probability structure of the random variables X..
If the process is to represent some aspect of a system subject to random
fluctuations through time, the parameter ¢ will typically be thought of
as time. For a system observed at discrete time points, the index set T
might be the set of lattice points {kh; £ =0, +1, . ..}, A > 0. If
observation is continuous, 7 is the set of real numbers. Such would
be the case if we were observing random fluctuations of current through
a cable or the fluctuating water level behind a dam through time. An
example of a multidimensional index ¢ is given by turbulent fluid
motion. X{(w) can be taken as one component of the random velocity
of the fluid at location ¢. Here ¢ is thrce dimensional. Another simple
example of a stochastic process with a multidimensional parameter ¢ is
given by

Xy = Z cos (tA) Z; )
7

where the Z7s are a finite number of independent normal variables
and t and the A’s are £-vectors.
In section a of this chapter, given a distribution function

F(xl, ... ,xk)

we noted how a probability measure P could be set up on the
space of k-dimensional points w = (wy, . . . ,wx) so that the coor-
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dinates X;(w) = w,, ¢ =1, ..., k, are random variables with
F(x1, . . . ,x) as their distribution function. This is a rather natural
construction since the points w of the probability space can be thought
of as sample points. A corresponding question arises when we consider a
random process, generally a collection of an infinite number (possibly
uncountable) of random variables.

Given a stochastic process { X;(w),te7'}, the distribution function

F(xtl'”"xt")(xin e ’xlk) (2)

of any finite number of random variables X;,, . . . , Xy, ¢, . . ., leT,
is determined. This family of the joint distribution functions of any
finite collection of random variables of the process satisfies certain
obvious consistency conditions. Suppose Q is a permutation of the
integers 1, . . . , £ among themselves. Then clearly

FXiau oo X""‘)(xfon e :xlok) = F(X“'”"'X"')(xtu s )xtk) (3)

since the order in which the random variables are listed is irrelevant.

Further, if we let the variables xy,,, . . . , %, 1 < j < &, approach
infinity, the distribution function of the random variables X, . . . , Xy;
is obtained

F&p- X (xy, o . L yxj,0, . . . ,0)

= F&p X (e, oL x), 1 <j <k @)

Typically in a description of a random process, the measure space and
the probability measure on the space are not given. One simply
describes the family of joint distribution functions of every finite collec-
tion of random variables of the process. The question that arises in the
case of such a specification is as to whether there actually is a random
process with such a family of joint distribution functions. A theorem of
Kolmogorov [44] assures us that this is the case if the joint distribution
functions satisfy the natural consistency conditions (3), (4). The proba-
bility space on which the process is constructed has functionsw = (w(¥),
teT) as its “sample points.” Thus a sample point w = (w(¢),teT’) corre-
sponds to a possible realization of the whole process. Since a function
(w(t),teT) can really be thought of as a vector (generally infinite-
dimensional) with dimension the number of index points in 7, this
is an appropriate generalization of the finite dimensional probability
space spoken of above. The random variable X(w) is simply the value
of w = (w(t),teT) at the fixed point ¢

Xi(w) = w(o). )
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The sigma-field § that the probability measure P is defined on, is
generated by the sets of the form

{wlw(tl) <X .0y w(ty) < x; tyy, « o oy tkeT}. (6)

In effect, a set function is defined on the field of sets generated by those
of the form (6), starting from the given joint distribution functions.
It is then shown that the set function actually acts like a measure on
the field and hence by Caratheodory’s theorem can be extended to a
measure on the sigma-ficld § generated by the field.

The sigma-field § considered in the Kolmogorov theorem is rich
enough to contain events of the form

{wlw(tl) < X1y « - w(tk) < xpy oot fay, « . . GT}
= {w|Xy(w) <x, ..., X)) Sx, . 05ty ty, ... €T (T)

that is, events characterized by conditions imposed on a countable
number of the random variables X:. However, in many contexts, there
is an interest in events of the form

tew|max|X(w)| < a} ®)

where U is a subset of 7. If U contains an uncountable number of
points, an event of this type will not be in §. However if the parameter
set T has a topology on it (a neighborhood notion) and the properties
of {X,teT} are decent as ¢ varies through T, we may hope to be able
to set up the probability space on which the process is defined in such a
way that the difference between (8) and

{wlrggle:(w)l < a} ©)

is a set of probability zero, when U, is a countable subset of U with
points that are dense in U. Then a set of type (8) specified by conditions
at an uncountable number of points ¢ is in §. Whenever this is possible,
it follows from the fact that the space of sample points w = {w(¢),
teT'} need not be taken as the set of all functions on T; it can be taken
as a set of functions with some strong regularity properties such as
continuity, piece-wise continuity, or bounded variation depending on
the joint probability distribution of the random variables X;. Then the
form of a sample function can be determined by its behavior on a dense
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set of points. Whenever an event specified by conditions on an uncount-
able number of random variables arises in a specific context, it will be a
context in which it can be phrased in terms of a countable number of
conditions on an appropriate probability space. A discussion of condi-
tions under which such a replacement can he effected can be found in
Doob [12] where he speaks of them as “separability” conditions.

Let us now consider a few continuous parameter random processes.
The first of these is the simplest normal or Gaussian process. 4 process
is called a normal process if the joint distribution of any finite number of the
random variables is normal. This process is usually called the “Wiener” or
“Brownian motion” process. It has been used as a crude model of a
particle in Brownian motion. The particle starts out from zero at time
zero

The displacements of the particle over nonoverlapping time intervals
are independent and normal with means zero and variances equal to the
lengths of the intervals. Thus

Xi,(w) — X,.(w) i=1 ...,k (11)
0<n<<u< -+ <7 Lt are independent with means zero and

variances t; — 7; respectively. Such a process is sometimes referred to as
a process with independent increments. This implies that the joint

probability density of the random variables Xy (w), . . . , Xy,(w) is
given by
E—1
1 ( xﬂ) l_[ 1 ( (X1 — Jf;)*’)
———exp | — > —_———exp | — A — ) (12
27!'[1 P 2t1 i1 '\/214‘([,‘.'_1 —_ lj) P 2(ti+l - tJ’) ( )

The sample functions (points) of this process can be taken to be con-
tinuous (see [12]).

A second example of a continuous time parameter process with
independent increments is given by the Poisson process. Here, as
before,

Now the increments of the process over nonoverlapping time intervals
are independent Poisson variables with means equal to AM(>0) multi-
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plied by the lengths of the time intervals. This implies that the
probability

P(th(w) =j1’ o .. $th(w) =]k)0 <H <:-- <tk)

k-1
(Aty)dig=M l_[ o S ) A P
/ ! s e u¥l u.
b At (e = )t
if the integersjy, . . . ,Jesatisfy 0 <7, < - - - <jr (14)

0 otherwise.

This process is sometimes used in a simplified model of a telephone
exchange. X,(w) then represents the number of calls made from time
0 to time ¢ The sample functions of this process can be taken as jump
functions (see [12]).

When dealing with a continuous time parameter random process
Xi(w), 0 <t < T, one often assumes that X,(w) is jointly measurable
in ¢ and w. We shall clarify what is meant by this statement. The
process X(w) is considered as a function of (¢,w) on the product space
[0,77] X @ of the real line segment [0,7"] and the space  on which the
random variables X; are defined. The product sigma-field generated by
the sigma-field of Lebesgue measurable sets on [0,7"] and the sigma-field
¥ on  is considered. By joint measurability of X:(w) in (¢,2) one means
measurability with respect to this product sigma-field. This assumption
is a convenient one to make (if possible) in certain contexts. Let
m X P be the product measure with m Lebesgue measure on [0,7"] and
P the probability measure of the process on Q. Suppose that X,(w) is
jointly measurable in ¢ and w with a bounded second moment

E|X(w)]? = /ﬂ IX(@)|PdP <M < ©,0<t< T.  (15)

The iterated integral
/OT E|X,(w)|*dt < MT (16)

is finite. By Fubini’s theorem

Jo Bx@)rde = [ 1%G0)Pm X P(d(w))
[0,7]x2

= [J] 1x) de ap 17

and hence

[0 " Xw)|2 e



96 Random Processes

is finite for almost every w. The assumption of joint measurability in ¢
and w is made in section ¢ of Chapter VIIIL.

We have taken random variables as real-valued measurable func-
tions with respect to the sigma-ficld of the probability space. In the
discussion of certain types of random phenomena it is convenient to
enlarge the concept of random variable. A random or stochastic
process { X;(w),teT} is still an indexed family of random variables X;(w)
on a probability space with index ¢ ranging over some parameter sct 7"
but the random variables are allowed to be complex-valued or vector-
valued (possibly infinite dimensional). If the random variables are
complex-valued, the real and imaginary parts of the random variables
must be measurable with respect to the sigma-field of the probability
space. If the random variables are vector-valued (let us say with real-
valued components), all the components of the random variables must
be measurable with respect to the sigma-field of the probability space.
Occasionally such an enlarged notion of random variable and random
process will be allowed in the chapters following.

e. Problems

1. Let Xy, . . . , X, be n independent, identically distributed random
variables with an exponential distribution

0 x<0
F(x)—{l—e‘” x>0,

Find the distribution function of the sum X; + + - - + X.,.

2. Let X, . . . , X, be independent, identically distributed random
variables with common density function
1 1

R N
Find the probability distribution of S, = % 2 X,
i=1
What does this imply about §, as an estimate of u?
Can you suggest other estimates of u? The density function f, is
sometimes called the Cauchy density function.

3. Let X be a random variable with a continuous distribution func-
tion F(x). Find the probability distribution of F(X).
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4,

10.

11.

12,

What can be said about the previous example if F(x) has dis-
continuities?

. Let X3, X, be two random variables with joint distribution func-

tion F(x1,x2). Suppose that F(x1,x,) is absolutely continuous, that is,

Fia) = [ [ f19) dye din.

Let Fi(x;) be the marginal distribution function of X; and F(xs|x1)
the conditional distribution function of X, given X;. Find the joint
distribution of F;(X;) and F(X.|X;).

Let X3, . . . , X, be n independent random variables with com-
mon density function

i = o7 RO 20

LetYy, ... ,Y,Y; < -+ <Y, bethe magnitudes X;, . . . ,
X, relabeled in order of size. Find the joint distribution of Y},
oL, 1 L rLn

. Prove Lyapunov’s form of the central limit theorem (see Problem

15 of Chapter II) by using characteristic function techniques.

. Show that if a random variable X has a finite positive integral

absolute moment E|X|* < o, then the characteristic function of
its distribution is differentiable up to n-th order.

. Show that if the characteristic function of the distribution of X is

differentiable up to even order 2n then
PllX| > t] = o(t7%) as t — .

Let X, X, X3, X4 be jointly normal random variables with com-
mon mean zero and covariances r;; = EX;X;, 7, j = 1, 2, 3, 4.
Show that the fourth-order moment EX1XoX3X4 = 719734 + 713724
+ 714728

Let X1, X; be two random variables with a given joint distribution.
X, is assumed to have finite second moment. We wish to predict X
by a predictor p(Xs) in terms of X2 Show that the predictor of X;
best in terms of minimizing the mean square error of prediction
is p(X2) = E(X;|X;). The result can be obtained by making use
of the identity E(X; — p(X2))? = E(E((X1 — p(X2))?¥X2)).

Apply the result of the previous example when X, X, are jointly
normally distributed.



98 Random Processes

13. Let f(u1, . . . ,ux) be a non-negative continuous function defined

on the unit hypercube 0 < uy, us, . . ., ©; £ 1 and bounded
above by one. Consider (X{V, ..., X®), i=1,..., n, as

independent, identically distributed points, each uniformly dis-
tributed over the k-dimensional hypercube. Find the mean and
variance of the statistic

n

1 . .

;zf(X?)’ L sX/(:))'
i=1

14. Show how the statistic introduced in the previous example can be
used as an estimate of the integral

1
[”‘ff(ul,-.~,uk)(1u1"°duk.
’ 0

This is a simple example of a Monte Carlo technique. Can you
show what advantage there is in using such an estimate when £ is
not small?

15. By using a table of random numbers get an estimate of

1 4

[ .. f n (1 —ui/2) duy dus dus duy
0

i=1

on the basis of a sample of size n = 15. How does this compare
with the actual value?

Notes

1. There are several ways of developing the theory of the integral. The brief
heuristic discussion in section a is consistent with only one of these. It is worthwhile
looking at {29], [53], {63] for alternative developments.

2. Characteristic functions (Fourier-Stieltjes transforms of distribution func-
tions) are a basic tool in the analysis of possible limiting probability distributions
of normed sums of independent random variables. The derivation of the central
limit theorem for sums of identically distributed random variables with finite second
moment given in section b is the simplest such application. A detailed analysis of
the limiting distributions of normed sums of independent random variables can be
found in Gnedenko and Kolmogorov [23]. Our principal interest is in the charac-
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terization of a positive definite function ¢(t), that is, the characterization of a func-
tion satisfying (b.5) as the Fourier-Stieltjes transform of a bounded nondecreasing
function. This result is applied in Chapter VII on weakly stationary processes.

3. The statistical model of turbulent fluid motion casually referred to at the
beginning of section d is examined in considerable detail in Batchelor’s monograph
on homogeneous turbulence [2]. Other examples of random processes with a multi-
dimensional parameter are encountered in statistical models of storm-generated
ocean waves [60].
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STATIONARY PROCESSES

a. Definition

Consider a random process X;(w) indexed by a parameter te7 for
which an additive group operation is defined. Typical examples are
those in which T is the set of real numbers or the set of lattice points
t =0, 1, . . . on the real line. More generally 7" might be all the
points in k-dimensional Euclidian space or the lattice points in such a
space. We shall say that the process is strictly stationary if the random
variables

Xln Xiz) LR Xtm (1)

have the same joint probability distribution as the random variables

Xeeny « o« 5 Xpin 2)

for any positive integer m, any t1, . . . , tm and all h in T. This can be
phrased more succinctly by stating that the probability structure of
the process is invariant under parameter translation. The finite dimen-
sional joint probability distributions therefore depend on ¢y, . . . , tm
only through the differences ¢, — ¢, . . . , tw — 1. It is worthwhile
giving a few examples of stationary processes as they arise as models
of various types of natural phenomena. The examples we give are set
in an engineering or physics context. This is natural since it is here that
stationary processes have been thought of as natural models of natural
phenomena most frequently.

1. The first example is that of shot noise. Consider the output cur-
rent X; of a vacuum tube. The current observed at time ¢ is a summation
of the contributions due to electrons arriving at the anode of the tube
at time ¢ or earlier. The tube and circuit can be characterized by a
function g(z) that gives the contribution to the current observed at
time ¢ due to the arrival of an electron at time 0. Assume that the elec-
tron arrivals are independent of each other. Further let the probability
of an arrival in (¢, ¢ + At) be BAt. Then the number n(¢) of arrivals of
electrons during the time (0,f) is a Poisson process. Assume that the

100
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effects of the electrons superimpose linearly. The current at time ¢ is
then given by
Xe= Z g(t—u) 3

ty <t

where the ¢, are the time points of arrival of the electrons. Notice that
the process X; can also be written

X = f_: gt — 1) dn(r) = /_‘°° g(t = 7) dn (r) 0

since g(¢) would be zero for negative ¢.

2. A second example arises in statistical mechanics. Consider a
conservative dynamical system with n degrees of freedom [22]. The
system is described by n generalized coordinates ¢i, ¢, . . . , g and
the corresponding generalized momenta p1, p2, . . . , pn. The motion
of the system is prescribed by the system of differential equations

g _ OH

dt ~ op: )

e P8H1=1,...,n (5)
dt T T g

where ¢ is time and H = H(p;q:5¢ = 1, . . . , n)isthe Hamiltonian of
the system. If H is a sufficiently smooth function, the system of differen-
tial equations has a unique solution for prescribed initial values of the
pis and ¢;’s. The 2n-space of points 4 = (x1,x2, . . . ,%a.), Withx; = ¢y,

'y Xn = Gy Xnt1 = P1, « - . 5 X2n = pu, is called the phase space of
the system. A system characterized by a point 4, in phase space at
time s is characterized by the point 4,4, after time £. We have a one-
parameter family of transformations 77 of the phase space into itself.
Consider a set S of finite volume in the phase space. The transformation
T transforms the set S into a set §; = 7S with volume

[o e dmn= [Ty dyan ©)
where Ty(yy, . . . ,y2u) = (%1, . . . yx2) and J is the corresponding
Jacobian

J— a(xl, o .. ,x2n). ) (7)

ICTCTRNINRN
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We shall show that volume is preserved under these transformations.
Now

2n
aJ
% z Ji (8)
k=1
where
(xs, . . o Xk 1,X\Xkp1, - - - sXa)
J —_ 3 b vy 3 b 9
; FT ORI ©)
and x = dxz/dt. But
2n
dx a(xl, Y 735 7% P70 ¢ NS PR ,in) dx .
e Zax, 3y, . - . Ym) xy (10)
and
aJ ?H J*H
— = e = —— = 0, 1
ot szl Opkaqk ]2 3qk6pk (1 )

Thus J does not depend on ¢ and therefore J = 1. The volume is
left unchanged by 7. This result is known as Liouville’s theorem. Con-
sider that part of phase space between two surfaces of constant energy.
Since the dynamical system is conservative, a point 4 in this region will
continue to remain in it throughout its history. If we start out with an
initial uniform probability distribution on this region it will remain
unchanged as time progresses. If we consider a phase function (or set of
phase functions), that is, functions of p1, . « . ,fmy g1, - - - » g, @s time
progresses, a strictly stationary process is generated. It was in such a
context that people tried to prove the equality of space averages and time
averages and were led to ergodic theorems. We shall consider some ergo-
dic theorems in section b of this chapter and in Chapter VIL.

3. The previous examples dealt with continuous time parameter
stationary processes. A simple example of a discrete time parameter
stationary process is provided by a class of Markov chains. Let P =

(pijsi,j = 1,2, . . .) be a transition probability matrix with an invari-
ant probability vector p = (p;;¢ = 1,2, . . .), that is,
PP = p. (12)

As we have already seen, a Markov chain with stationary transition
probability matrix P and invariant instantaneous probability vector p
is an example of a stationary process (see Chapter III).
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b. The Ergodic Theorem and Stationary Processes

The ergodic hypothesis, “equality of space averages and time
averages,” was casually referred to in our discussion of Liouville’s
theorem. We shall now investigate this hypothesis in some detail in
the context of a strictly stationary real-valued discrete parameter
process. The restriction to a discrete time parameter is not essential
and is used to avoid a tedious discussion of fine points.

Let {X,},n=0, £1, . . . , be astrictly stationary process with finite
first moment, that is, E|X,| = E|X| < «. The basic probability space
can be thought of as the space of points w = (. . . ,w_jwews, . . .)
with X,(w) = w,. Thus each w point represents a possible history of
the system considered as it evolves from t = — o to t = 4+ © with
Xn = w, the location of the system at time n. We now introduce a
transformation 7" of the space @ of w points into itself. This transforma-
tion 7 is naturally called the *“shift” transformation since it takes the
point w with n-th coordinate w, into the point w’ = Tw with n-th coor-
dinate w}, = (Tw), = was1. Let T be the transformation inverse to 7°
so that the point w’ = T—w has n-th coordinate w], = (T w), = wWa-1.

Given any set 4 of w points let

TA = {w|T 'wed}. 1)
By the stationarity assumption the event
A= {w]Xu@@) <y« . oy Xu(w) < M @)
has the same probability as

T-14 = {0 Xo(Tiw) < Ny, - - . 5 Xos(T0) < Aa)
= {w|Xu (@) <Xy - oo, K@) < N (3)

But then, by the theorem of Kolmogorov, P(4) = P(7T~14) for all sets
4 in the Borel field generated by events of the form (2). Such a trans-
formation 7 is called a ‘“measure-preserving” transformation for the
probability measure P(.) since the probabilities of the events 4 and
T-14 are the same for all 4. Thus, the shift transformation is a meas-
ure-preserving transformation for the probability measure of a strictly
stationary process.
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Ergodic theory is basically concerned with the limit behavior of
time averages of the process

n—1 n—1
% z Xi(w) = % z Xo(TH0) )

k=0 k=0

or more generally, the limit behavior of time averages of a decent func-
tion of the process and its time shifts, that is,

1n—1
= ) [(THw). ' )
" IZ)

By a decent function f, we mean one that is measurable with re-
spect to the Borel field of measurable sets and is integrable so that
E|f(w)| < . Any function of the process can be written in the form
f(w) since the w points are simply the countably dimensional vectors
that are the possible sequences of X, values. A basic interest in ergodic
theory is that of finding conditions under which the limiting time
average

n—1

lim % A(THw) (6)

k=0
is equal to the “space average”

Ef(w) ™
for any decent function f of the process. The expectation Ef(w) is a
space average since it is an average with respect to the probability
measure of the process over all possible paths or histories w of the
system. On the other hand, the time average

n—1
1 k
- ;f(T w) ®)

is an average with respect to a specific history or sample point w. Of
course, equality cannot be expected for all w; it is enough to require it
for almost all w. 4 strictly stationary process { X} is called an ergodic process
if the limiting time average

lim % f(Thw) )
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exists and is equal to the space average

Ef(w) (10)

for almost all w and every integrable f. Such ergodic processes are of con-
siderable interest. For in the case of such a process by studying the time
evolution of one possible sample path or history, the statistical struc-
ture of the whole ensemble of possible paths can be obtained due to
the interchangeability of time and space averages.

The ergodic theorem that we shall obtain will give us necessary
and sufficient conditions for the ergodicity of a process. It is unfor-
tunately true that in many situations it may require almost as much
work to verify these conditions as to prove ergodicity directly. How-
ever, there are probabilistic contexts in which these conditions are
convenient. It is natural to introduce some of the relevant concepts
in terms of the shift transformation T and the probability measure P of
the process. An event A of the Borel field is called an invariant eventif A = T—1A
with at mast the exception of a set having P measure zero. The collection of
invariant events (or sets) is a subsigma-field of the Borel field of the
process. The process (or the corresponding measure P) is called “metrically
transitive” if the field of invariant sets is the trivial field consisting of the whole
space Q, the null set ¢ and sets differing from these two by at most a set of prob-
ability or P measure zero. It will later be seen that the metrically transitive
processes are identical with the ergodic processes. Paralleling the
notion of an invariant event, we introduce the notion of an invariant
function. A function f is called an invariant function if f(w) = f(Tw)
almost everywhere. An equivalent way of stating this can be given in terms
of invariant events. A function f is invariant if the set {w|f(w) < x}
is invariant for every real number x. Notice that a process is metrically
transitive if and only if every invariant function is equal to a constant
almost everywhere. Thus in the case of metrically transitive processes,
the only invariant functions are the trivial constant functions.

The ergodic theorem we prove in this section is called the “strong”
or “individual” ergodic theorem because it is concerned with point-
wise convergence. It was originally obtained by George Birkhoff. The
proof given here is ingenious and is due to F. Riesz [62].

Ergodic Theorem: Let P( - ) be the measure on the space of sequences w
generated by a strictly stationary process. Let T be the shift transformation and 4
the Borel field of invariant w sets. If f is a function with finite first moment
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Elf(w)| < o, then

n-—1

fim 2 A(Tho) 1

n— e
i=0

exists with probability one (P measure) and is equal to E{f(w)|g}. If the
stationary process is metrically transitive E{f(w)|g} = E{f(w)} so that time
and space averages are equal.

We first make a simple remark about a finite sequence ¢y, . . . , ¢a
of real numbers. Let A be the set of integers m < n such that c,, is exceeded by
the maximum of those numbers in sequence following it

tm < Max ¢;. (12)
i>m
The set A can then be decomposed into maximal disjoint blocks of
successive integers. If a, B are the first and last integers of such a block

G <cnalj<B (13)

This is rather simple for since 8 + 1¢4, ¢g41 > max ¢;, and there-
i>8+1

fore since Bed
g < Max ¢; = Cpy1. (14)
i>8

If o < B, the number 8 — led and hence ¢y < max ¢; = cgy1.
i>B8-1
For @ < 8 — 1 the argument continues as given above.
Consider now f(w) any function with finite first moment E|f(w)|

< . Let S, = Su(w) be the partial sum
Su(w) = f(w) + f(Tw) + - -+ + f(T*1w). (15)

Take 8 to be any constant and M any invariant set of the probability
measure P(-) generated by the process. As a basic step in the proof of
the ergodic theorem, we shall first show that

fw) dP > ﬁP['L.u.b. $ul0) B} M]- (16)
! S ) 2t "
TwlLub 225l ar
n>1 ™

Here L.u.b. serves as a convenient abbreviation for least upper bound.
Notice that it is enough to prove this inequality for the case 8 = 0, for
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one can reduce it to this case by replacing f(w) by f(w) — 8 and
Sa(w)/n by Sp(w)/n — 8. Set

= {wILub Sa(w) > 0}
{wIL u. b Sa(w) > 0}. a7

1<n<)
The sequence of sets A; is an increasing sequence with A the limit as
j— . Consider the sequence Si(w), . . . , Sa(w) and let 4 = A(w)
be the set of integers relative to this sequence discussed in the previous
paragraph, that is,

Aw) = {m|m < n, Sp(w) < max Si(w)}. (18)
j>m

Further let N; be the set of w points such that jed(w). The discussion
of the preceding paragraph indicates that

2 f(T'w) 2 0. (19)

jeAw)
But this implies that

n—1
J. ﬁ;w)f( res 2 Joux J(Tw) dP 2 0. (20)

The set
N; = {w) 'srkngx“l[f(T"w) 4+ -+ [(Thw)] > 0} = TA,; (21)

and T is measure-preserving. Therefore

n—1

0< 2[ f(T’w)dP—z [ f(Thw) dP

] =1 MT An-;
n—1

2 [ 1w ap = 2[ fw) dP. (22)
Since 7= M
lim [ f)dP = [ fG)dP (23)

inequality (16) is obtained from (22) on dividing by » and taking the
limit as n — .

It is almost immediately clear that

y1(w) = lim inf —— ,.(w) (24)
and n_w
y2(w) = lim sup @ (25)
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are invariant functions. It will be enough to give the argument for

y1(w). Now
i) = lim inf L) H 2+ AT)
n— o n
it ST T

n— n

We shall now show that y;(w) = ys(w) almost everywhere so that
lim S,(w)/n exists. Take any two real numbers a, 8, a« < 8. Let M,z

n— oo

be the invariant set {w[y(w) < @ < B < y2(w)}. Now

Map = Mag {wIL.u.b Sa@) o g (27)
n>1
so that by inequality (16)
[, fe) 2P = / f@) &P 2 BP{Mag}.  (28)
, aﬂ{wILubS"(w) ﬁ}
The inequality
[ | f@) dP < aP(Ma) (29)

is obtained by applying the same argument to {—f(7%w)} with «, 8
replaced by —B, —a. The inequalities (28) and (29) cannot both be
valid unless P{M, 5} = 0. Let us now take «, 8 any pair of rational
numbers with ¢ < 8. Then

Piyi(w) < yo(w)} = Pf \</ﬁ Mg} < EBP{Ma.ﬂi =0 (30

so that y1(w) = y2(w) = y(w) = lim S,(w)/n almost everywhere.

Since the random variables f(7%w) have a common distribution
because of the stationarity of the measure P, the averages (see note 3
at the end of this chapter)

. e . n—1,

n n

are uniformly integrable. But this implies that the limit y(w) = lim

n—» o
S, (w)/n is finite-valued with probability one and integrable. Take M
to be any invariant set. Then

[ e a ——z J.., T 2 = z |, sy ap

- / 5 4p (32)
M

n
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Because of the uniform integrability we can go to the limit and find that
/M f(w) dP = / L ¥(w) dP. (33)

In fact, the uniform integrability implies that S,(w)/n converges to y(w) in

the mean, that is,

asn— .

Since y is measurable with respect to the sigma-field of invariant sets,
it is clear that

“@ — () ldp—> 0 (34)

y(w) = E(f(w)l9) (35)

and hence that y(w) = Ef(w) almost everywhere if the measure is
metrically transitive. On the other hand, if

n—1

lim LY {(Tiw) = Ef(w) (36)
n-—> w0 ]-0
for every function f with E|f(w)] < o, it is clear that the process must
be metrically transitive. Thus, meiric transitivity is a necessary and sufficient
condition for a stationary process to be ergodic.
It will be convenient to obtain conditions for ergodicity of a sta-
tionary process in a different form. Let J,(w) be the set characteristic
function of a measurable set 4 (an event), that is,

1 if wed

0 otherwise. G7)

1w = |

Let 4,B denote any two measurable sets. If the process is ergodic
n—1

2 1,(T'w) — EI(w) = P(4) (38)

i=0

1

n
as n — . But this implies that

n—1
% EIA(T’w)IB(w) — I(w)P(4) (39)

i=0
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as n — . On integrating the above, we find that

n—1 n—1
% 2 PBN T-4) = / ! ZIA(wa)IB(w) P (40)
=0 7=0

— [Iy(w)P(A) dP= P(B)P(A4) as n — .
Hence ergodicity implies that
n—1

lim + Y P(BN T-4) = P(4)P(B) (41)

n-—s
i=0
for any two measurable sets 4, B. Now consider applying relation (41)
to an invariant set C, that is, set 4, B = C. Then

n—1

P(C) = lim - z P(C N T-C) = PXC). (42)
i=0

Since one can only have P(C) =0 or P(C) =1, every invari-
ant set is trivial and the process is ergodic by the ergodic theorem.
Condition (41) for any two measurable sets A, B is thercfore a necessary and
sufficient condition for ergodicity. Notice that (41) is implied by a stronger
condition, namely

lim P(BM T-74) = P(B)P(4) (43)

e
for any two pairs of events 4, B. This condition is commonly re-
ferred to as a mixing condition and is, essentially, a form of asymptotic
independence.

As one might expect, a stationary process of independent, identically
distributed random variables is mixing. We shall now prove this result. Let
A, B be any two events. Given any € > 0, there are events 4,, B,
measurable with respect to the Borel field ®, generated by X_,(w),

. Xa(w) (n will of course depend on €) such that the probabilities
of the symmetric differences 4 © 4,, B © B, is less than ¢, that is,

P49 4,), PBOB,) <E. (44)

This follows since the union of the Borel fields &, is a field that gen-
erates the Borel field of the process. Now

|P(B N T-i4) — P(B, N T—4,)| =
|P(B N\ T-4) — P(B, N T-i4) + P(B, N T=i4) — P(B, N T4,)]
<2e (45)
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Since
P(B, M T—4,) = P(B,)P(T~4,) = P(B,)P(4,) (46)

for j > 2n, it follows that

|P(B N\ T-i4) — P(B)P(4)| < 4¢ 47)
for j > 2n = 2n(€). But this is valid for every € > 0 and hence
lim P(B M T—74) = P(B)P(4). (48)
j®

It is natural that a process of independent random variables ought
to satisfy as strong a mixing condition as desired and thus be ergodic.
A less trivial and somewhat more illuminating set of examples is pro-
vided by the class of stationary Markov chains. First consider the case
of a chain that is not irreducible. Then there are at least two nonempty
disjoint closed sets Cy, Cs so that

0 < P(X,w)eC) < 1,i=1,2. (49)

Moreover, since C; is closed the event A = {w|Xy(w)eC1} is a non-
trivial invariant set (714 = A). A chain that is not irreducible is clearly
not ergodic. We shall now see that the irreducible chains are the ergodic chains.
Ergodicity is implied by the validity of relation (41) for any pair of
events 4, B. However, by the argument of the preceding paragraph,
it is enough to verify (41) for any pair of events A,, B, measurable
with respect to ®, (the field generated by X_.(w), . . . , Xa(w)).
Let A,,, B, be the events

Ap = {w| X (@) = iomy . . . 5, Xn(@) = in}
By = (| Xon(t0) = jom ) Xnl) = jm}. (50)

Now

P(B,, N\ T7*A4,,)

=]717—mpi-m,i-m+n cr pim-l’inlp;ﬁgz—ﬁ)pf-m'j-m+l Tt l)jm-l'].m (51)
for k£ sufficiently large. By Problem 15 of Chapter 1II, if the chain is
irreducible

n—1
lim P = Dio (52)
n—owo N !
k=0
But this implies that
n—1
lim z P(B, N T-4,) (53)
e k=0

= p‘i—ml}i-m-’i—mﬂ T pfm-l-‘impj—vnpj—m'f—m+l e Pim-bjm = P(Am)P(Bm)
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so that the chain is ergodic. If the chain is irreducible with persistent states,
condition (52) can be replaced by the stronger condition
lim p:‘:?i-m = i (54)
n— o
which implies that the chain is mixing by a similar argument.
Let us now return to the case of a stationary process of independent
random variables and make an almost obvious but nonetheless worth-

while remark. Any Borel function f(w) on the sample space of the
process induces a derived process, namely,

Yu(w) = f(Tmw). (55)

Since the original process X,(w) is mixing, it follows that any such
derived process Yo(w) is mixing. In particular, any process of the form

0
Y, = . z a.an—ja Ea} < o, (56)
jm = 7
with the X,’s independent, identically distributed with mean zero
and variance one, is mixing.

There are not many processes that have been characterized in
terms of ergodic or mixing properties. A precise characterization of
the normal processes that are ergodic or mixing has been given in a
paper of Maruyama [55].

c. Convergence of Conditional Probabilities

At this point we shall prove a theorem on the convergence of
sequences of conditional probabilities. Even though there is consider-
able interest in this result for its own sake, we shall be basically inter-
ested in applying it to obtain MacMillan’s theorem, a result of some
importance in information theory, in the following section. It should
be noted that this convergence theorem can be regarded as a special
case of a Martingale convergence theorem (sec Doob [12]).

Suppose there is an increasing sequence of subsigma-fields €,(C,
C C,41) of @ with C the subsigma-field of ® that \U €, generates.
Let 4 be an event. We shall show that

P(4le,) — P(4|e) M

almost everywhere as n — o . In section d this result will be applied in a
context where @, is the Borel field generated by a family of random
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variables X_1(w), . . . , X_.(w) and @ that generated by the infinite
family X_;(w), X_s(w), . . . . Notice that (1) can be rewritten
E(cs(w)|C,) — E(ca(w)|C) (2)

where ¢4 is the set-characteristic function of the event 4. This suggests
the apparently more general result

E(f(w)|e,) — E(f(w)]e) ©)

with f a bounded measurable function (with respect to ®). Notice
that (3) readily follows if we are able to show that

E(g(w)le,) — g(w) 4)

almost everywhere for a bounded function ¢ measurable with respect
to the subsigma-field €. For g(w) = E(f(w)|@) is measurable with
respect to € and hence by a basic property of conditional expectations
(see equation (IV.c.12))

E(fw)|e.) = E(E(fw)|e)|e,) = E(g(w)|Cn)
— gw) = E(f(w)|e) ®)
asn— o.

Further, it is enough to prove (4) for simple functions (linear com-
bination of a finite number of set characteristic functions of events)
measurable with respect to @ and therefore sufficient to verify it for a
@ measurable characteristic function. For a bounded € measurable
function g is the limit almost everywhere of a uniformly convergent
sequence of simple functions g; measurable € (such a sequence is
given by gi(w) = [kg(w)]/k where [x] denotes the largest integer less
than x) and

|E(gle,) — gl < E(lg — gl 1C) + |E(grlCn) — il + lgx — gl (6)

The first and last term on the right will be small if £ is large. The second
term is small for large n.

Since it is enough to verify (2) for g the characteristic function ¢4 (w)
of a set A measurable @, let us establish this. Take &, § as two small
positive numbers less than one. Since € is generated by the fields €,,
there is a set B in some field ©; with £ sufficiently large such that
P(AOB) <&d/2. Let

Dy = {w|l — P(d]€,)(w) 2 e} M
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Set F» = BN\ Dy, F® = B\ Dy — FP, F® = BN Dyyy —
(FOUFD), . . . . Notice that F{ is in @yj_1. Now

PEP — A = [ [ = PAlew )] dP > P(FP) e (8)
so that if F, =\ F, then
2

P(Fr — A4) > P(Fy) e )

This implies that P(B — A) > P(F}) €. But P(Fy) < §/2since P(B — A)
< PBEA4) <ed/2.
If weB — Fy, then P(4]€,) > 1 — & when n > k for Fr = BN
{w]l — 12£ P(4]e,) > €} where inf is an abbreviation for infimum.
n—

This implies that P(4|C,) > 1 — € throughout 4 except for a set of
probability at most & since P(A © B) + P(F,) < €8/2 + 8/2 < 6.
Since €, é are arbitrary P(4|@,) converges to 1 almost everywhere in 4.
The same argument applied to 4 indicates that P(4|@,) — 0 almost
everywhere in 4. Thus P(4|C,) — ¢4(w) almost everywhere.

d. MacMillan’s Theorem

In recent years there has been a considerable interest in communi-
cation problems. In particular, work of Shannon [73] and others has
led to the growth of a field of interest commonly referred to as ““infor-
mation theory.” Excellent discussions of the basic problems in this
field are to be found in the monographs of Khinchin [42] and A. Fein-
stein [14]. In such problems, there is a message to be transmitted over
a communication channel. The message must be encoded in a form
that the channel can accept. After transmission, the message received
must be decoded so as to reproduce the information transmitted. Since
there is noise corrupting and distorting the transmission of messages
over the channel, a basic question that arises is the encoding of the
message so as to guarantee the most efficient transmission of informa-
tion over the channel. This will depend on the statistical character
of the message to be transmitted and the channel. We shall not study
the full communication problem, only certain aspects of the message
to be transmitted.

Suppose the message to be transmitted is in an alphabet of s
letters. For convenience, let us denote these letters by the symbols
ay . . ., a. Assume that the message to be transmitted can be rea-
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sonably regarded as the realization of a stationary stochastic process
Xo(w),n =0, £1, £2, . . . . Then X,(w) is the symbol to be trans-
mitted at time n. The probability space of the process X,(w) has a
nonenumerable number of elementary events and the concept of entropy
has only been introduced for probability spaces with a finite (or
countable) number of elementary events. It will be advantageous to
extend the entropy concept to the probability spaces of such processes
X, (w).

Consider the random variables X_,1(w), . . . , Xo(w). There are
s® possible corresponding distinct sequences of symbols and hence the
field @, of these random variables can be regarded as a finite field
with s* elementary events. Let 7" be the shift operator introduced
in section b. Then TQ, is the field of X_,(w), . . ., X_1(w). Let
H, = H(Q,) be the entropy of @,. If lim H,/n = H exists, it would be

n—>» o

natural {0 call this limit the entropy of the process X,(w) (it would be more
accurate to call this the average entropy per symbol). This limit will
be shown to exist. Now

H(an+m) = H(an \Y Tnam)
= H(®Q,) + Hq (T"Gn). M

Further

He, (T"Gy) < H(T"Cm) = H(Gm) @
(see problem 19 of Chapter II) from which it follows that
H, = H(Q.) £ Hupm = H(Cuim) < Hy + Hyp = H(Gn) + H(Gm). (3)
From this it follows that H, < nH; and hence that

H = lim inf H,/n 4)

is finite. Coonsider any € > 0. Let m be such that
H

7’" <H+e (5)
Given any n > m, there is an integer £ > 1 such that
k —1)m < n < km. 6)
But then inequality (3) implies that
I;:ﬁs(kljkq)msk—k—l%ﬁ<k—é—f([{+e) @
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and therefore, for sufficiently large n,

H-—e<%<7c_k-—1(H+e)<H+Ze. (8)
Since € is arbitrary
H = lim inf A, = lim 2, 9)
n— « n n—o N

Now let

l’n(ao, C e yOp) = P[Xo(w) =0, . . . X,,__l(w) = a,_1]
l’(an—llan_2, ... ,Q0)

= P[X _1(w) = a,,_llX —2 T Op—2y « o o« Xo(w) = ao] (10)

where aqg, . . ., ay,—1 each assume one of the values ay, . . . , a,.
MacMillan’s theorem states that the random quantity

— 108 pa(Xe()s - - - Ko@) = al) (11)

converges to H in mean as n — © if X,(w) is an ergodic process. This result
is essentially obtained by an application of the ergodic theorem.
We have

— log pu(Xo(w), . . . ,Xu-1(w))
n—1
= =% 1og pG() Tis(@), - -+ Xolw) 12
= "3 g(Thw)
k=0
where
gr(w) = — log p(Xo(w)|Xa(w), . . . , X (w)). (13)

By section c,
— log P(Xo(w) = o|X_a(w), . . . , Xk(w)) = @(w;e)  (14)
converges almost everywhere as £ — <. But then
ge(w;a) — gv(w;a) — 0 (15)
almost everywhere as k,k" — . However,
as
lgr(@) — ge(w)] £ 2 |ge(wse) — gr(wse)| —0 (16)
as kk"— o and therefore gi(w) converges to a limit g(w) almost

everywhere as £ — c. It is conceivable that g(w) might be infinite
on a set of positive probability. As we shall see this is not possible since
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the sequence gi(w) will be shown to be uniformly integrable. Notice
that gx(w) is measurable with respect to G+1. Let Bx be an elementary
event in 7G; and 4; an elementary event in Q1. An elementary event
of Qxy1 is then of the form Bi4;. Since gi(w) is measurable with respect

to Gy, for wéBkAl,

au(w) = — log P————;fg:)‘)- (17)

Let Sk; = {w]j < gi(w) <j+ 1}. If Bxd, is an elementary event of
@41 that is a subset of S ; then

P(B:A3) .
(B >7 (18)

and hence P(B;A:) < ¢7P(Bx). Then
[ a1(w) dP = z [ ar(w) dP

— log

Sk, By BiSk,i
(19)
< Y G+ DPBAS) < s(j + e
By,

where s is the number of values that can be assumed by X.(w).
Inequality (19) implies that the sequence gi(w) is a uniformly integrable
sequence of random variables. Thus g(w) = lim gx(w) is integrable and
Jlg(w) — g(w)| dP —0 (20)
as k£ — «. By the ergodic theorem
n—1
LY st (21)
k=0
approaches an invariant function %(w) in mean as n — o. Further, if
the process X,(w) is ergodic, A(w) is the constant

h(w) = Eg(w) = ;ffl Egi(w) = H. (22)

Now

n—1
/ |fa) — h(w)| dP = [ '}1 2 ae(Thw) — h(w) I P
k=0

n—1

< /l};kzo les( T —g(T"w)]ldP+f‘%gg(Tkw)—h(w)ldP

n—1 n—1
1 1
S; | gi(w) — g(w) |dP+/ p g(T"w)—ll(w)'dP—»O (23)
2/ 2
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asn — o by the stationarity of the measure P (generated by the X, (w)
process) and the ergodic theorem. The proof of MacMillan’s theorem
is complete.

MacMillan’s theorem can be given an interesting interpretation.
Consider messages of length n. There are s* such possible messages.
MacMillan’s theorem states that with probability almost one the prob-
ability of such a possible message is to the first order

el (24)

There are roughly ¢"# such sequences. However, H < log s and thus
the number of messages of appreciable probability is ¢"® which is
usually much smaller than s" = ¢"'22, In encoding, one therefore need
essentially consider only the ¢*# messages of large probability.

e. Problems

1. Consider the integers 1, 2, . . . , » with the uniform distribution
on them. Let the function f map the integers 1, 2, . . . , n onto
themselves. Show that the process generated by f is strictly sta-
tionary. Under what circumstances is it ergodic? Can it be mixing?

2. Let X be a random variable uniformly distributed on [0,1]. Con-
sider the process X, = X + na mod 1 where « is an irrational num-
ber. Show that the process X, n = 0, £ 1, . . . is strictly station-
ary. Is it ergodic?

3. Let X be a given random variable. Consider the process X, = X,
n=20, +£1, ... . Is this process ergodic? If not, indicate the
sigma-field of invariant sets.

4. Consider the unit square 0 < x, y < 1 with uniform measure on it.
Let T(xy) = (2x,34y) if 0 < x < ¥4 and T(x,9) = (2x,%45(y 4 1))
if 14 < x < 1. These equations are to be taken mod 1. Show that
the process generated by the transformation is strictly stationary.
Is it ergodic?

5. We say X, is m-step dependent if blocks of random variables are
independent when separated by m indices. Let X, be an m-step
dependent strictly stationary process. When is such a process
ergodic? When is it mixing? Construct examples of m-step depend-
ent processes form = 1,2, . . . .
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6. Let X, be a strictly stationary process that can assume only the
values 0 or 1 at any fixed time. Let the probability

P[Xn‘ = il, Xn, = iz, e ey Xn,‘ = lk]
k k

1 i k- X e

[t =p) = dF )

where F(p) is a distribution function with all its mass on [0,1].

What are the invariant sets of this process? Under what conditions
is it ergodic?

7. Compute the entropy per unit time of a stationary Markov chain.

Notes

1. An extensive discussion of the background in statistical mechanics in which the
ergodic problems first arose can be found in Khinchin’s book [41]. M. Kac has
much material on the current status of allied problems in statistical mechanics in
his recent volume [37].

2. Ergodic theory has grown into a field of considerable breadth after G. Birk-
hoff and J. von Neumann derived their ergodic theorems. It would be hopeless to
try to give any extensive bibliography of the work in this area. It is worthwhile,
however, referring to the books of E. Hopf [35] and P. Halmos [30] on ergodic
theory. Hopf’s monograph is excellent in its treatment of the early work on these
problems. Halmos’s essay is recent and discusses interesting open questions in this
area. The two books are an excellent introduction to ergodic theory. A later book of
S. R. Foguel [A5] is concerned with ergodic theory of a Markov process and deals
with results and ideas that we haven’t touched on. ,

3. The uniform integrability of the sequence §,/n used on page 108 can be
readily seen in the following way. The random variables f(77w) are uniformly inte-
grable since their marginal distribution functions are identical. Thus, given any
e > 0, there is a 5(¢) > 0 such that if P(M,) < 3(e)

/M f(Tiw)|dP < e j=0,...,n—1.

fM" dpg%nilf "lf(—Tn"‘”—)lqu.
=0

But then

Sn
n
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MARKOV PROCESSES

a. Definition

We have already discussed a special but exceedingly rich and
interesting class of Markov processes in Chapter III, the Markov
chains. In going from Markov chains to Markov processes one allows
possibly for a much more general state space. Continuous time param-
eter processes will be of special interest in this chapter.

The object of this section is to characterize the class of processes
for which past and future are independent given precise knowledge of
the present. It is already clear from the preceding statement that the
indexing parameter of the random variables of the process must be a
time-like parameter. Let 7" be the parameter set. The most common
choices of T are the set of real numbers or the set of lattice points
khy k=0, £1, . . ., 2 > 0, or any subset of these. Now consider
the question of specifying the joint probability structure of the random
variables {X;(w),teT}. This will be done by specifying the joint prob-
ability structure of any finite number of them in a consistent way.
The theorem of Kolmogorov [44] then assures us that there is a sto-
chastic process with this probability structure. Actually we shall not
restrict ourselves to real-valued random variables. The random vari-
ables X;(w) can take as values complex numbers, points in Euclidean
k-dimensional space, or even points in an abstract space. However,
even if we do allow this generality, it is clear we have to say something
about the range of the random variables, that is, the state space of the
process. Let Qx be the state space of the random variables X, Take Fx
as the sigma-field of measurable subsets of @x. Further, we shall assume
that Fx includes all sets consisting of a single point of Qx. For con-
venience, assume that there is a first point to the set 7. The probability
structure will be specified in terms of an initial probability measure
and a transition probability function describing how transitions take
place from one time to another.

Let P(ty,A) be a probability measure on the sets 4 of §x. This, as
we shall see, is the probability distribution at the initial time #o. Further

120
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let the transition probability function P(r,x;t,4), to < 1 < t, xeQx,
AeTFx, be a function with the following properties:

(i) P(r,x;t,A) is a probability measure in AeFx for fixed 7, x, ¢;
(i) P(r,x;t,A) is measurable in x with respect to Fx for fixed r, ¢, 4;
(iii) P(r,x;t,A) satisfies the integral equation (commonly called
the Chapman-Kolmogorov equation)

P(rx;t,A) = | Plrxst'dy) P(!,y;t,4) €]
Qx

for any ¢’ with 7 < ¢ < ¢. We are now in a position to specify the joint
probability structure of the random variables {Xte7T}. Of course, X,
is to specify the location of an observed system subject to random
disturbances at time ¢. The probability that the system is in set 4o at
time 4o and in set 4; at time ¢, to < t; < - * + < ¢y, is defined to be

P[Xt,,éAO, PR )Xl,.eAn] = /A .o .

0

. / 1 Plodyo) Pltoyoitndys)  (2)
o P(tn_z’yn‘z;t”_l’dy"“'l)P(tn-—byn—l;thn).

A little reflection indicates that (2) coupled with the Chapman-
Kolmogorov equation ensure that the probability structure is given
consistently. The probability distribution P(¢,4) at time ¢ > £ is then

P(,4) = PXed] = [ Pltodyo) Pltoyoit, ). (3)

The family of sets {w|X,(w)edo, . . . ,Xi (w)ed,} generates a field
of sets in the space of sample functions w = w(¢) (see section d of
Chapter 1V) with values of the sample functions points in the space Qx.
Now since P as given by (2) is countably additive on this field, it can by
Caratheodory’s theorem be extended to a probability measure on the
sigma-field generated by this field.

In the case of Markov chains (see Chapter III) time is discrete
and the state space is countable. Because of this, the transition prob-
ability functions can be represented in matrix form and integration is
replaced by summation in the formulas given above.

It follows readily from (2) that the transition probability function
P(r,x;t,A4) is the conditional probability P[X,(w)ed|X,(w) = x]. Suppose
we take sets 4, B of the form

A = {wiX, (w)eds, . . . ,Xy(w)ed,} )
B = {w|X,,(w)edrt1, . . . X, (w)edul,
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<< < p<t< < <t, (as in section a of
Chapter III) in the past and future relative to ¢. Then (2) implies that
P[AB|X(w) = x] = P[4|X\(w) = x]P[B|X\(w) = x] (5)

so that given the present the past and future are independent. There
is a second way of rephrasing the Markovian property that follows
from (2). Let B be an event in the future relative to ¢. It then follows
from (2) that

P[BIA’,(ZU) =X A"Ic(u}) = Xy oo ey th(w) = xl]
= P[B|X,(w) = x], (6)

that is, all higher order conditional probabilities reduce to first-order
conditional probabilities. Of course, this is not surprising since (2)
states that the full probability structure is determined by the initial
probability distribution and the first-order conditional probabilities
in the case of a Markov process. In the case of a non-Markovian
process, the higher order conditional probabilities do not reduce to
first-order conditional probabilities and hence they are needed for a
full specification of the probability structure of the process.

If the transition probability function depends on 7, ¢ only through
the time difference ¢ — 7 so that

P(Tax;t3A) = P(t - T, X A)a (7)

the process {X.} is said to have a stationary transition mechanism. The
Brownian motion and Poisson processes introduced in section d of
Chapter IV are examples of Markov processes with stationary transi-
tion mechanism. In the case of the Brownian motion process, the state
space is the set of real numbers and the transition probability function
is given by

P(r,x:t,A) = P[Xi(w)ed| X (w) = x] (
= P(t — 1 Y I T _b =
= P(t , x, A) /A V=5 exp ( 20 = T)> dy. (8)

The state space of the Poisson process is the set of non-negative integers.
The transition probability function is given by

P(l - T, j, A) = z L):gi_:j-)]ft’ e—Met=7) (9)
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where k£ and j are non-negative integers. Notice that even though the
two specific Markov processes referred to above have stationary transi-
tion mechanism, they are not stationary processes. In fact, a Markov
process with stationary transition mechanism will not be stationary
unless its probability distribution at time ¢ P(£,4) is independent of ¢,
that is,

P(1,4) = [9 Pto,dx)P(t — to, x, A)
= P(to,d) = P(A). (10)

Thus, the initial distribution P(¢o,4) = P(4) must reproduce itself
through time. However, we have already seen in section a of Chapter
III that there are stationary transition probability functions for which
there is no self-reproducing initial probability distribution.

If the Markov process has stationary transition mechanism and
time is discrete (¢ = 0, 1, . . .), all higher order transition prob-
abilities P(¢,x,4) can be given recursively in terms of the first-order or
one-step transition probability P (1,x,4) as follows for t = 0, 1, . . .

PRx,A) = [ P(15,d)P(1,4)

P+ 1,5 4) = [, Plxd)P(1,4) an
= [, Pxd)P(ty,4).

It is very easy to give examples of non-Markovian processes. For
simplicity consider discrete time ¢ = 0, £1, . . . . Let X; be a normal
process satisfying the difference equation

m
kEO akXt—k = St, Qoy m F O, (12)

where the £; are independent normal random variables with mean
zero and & is independent of X, ;, X, . . .. The process X; is
clearly Markovian if m = 1 but not if m > 1. For the conditional ex-

pected value E(X,|X;_1, . . . ,Xtem) = —ag! b5 ar X and this would
k=1

depend only on X, if the process were Markovian. However, even
if m > 1 we can introduce a related process with the same amount of
information that is Markovian. Let ¥, be the m-vector valued process

]rz = (Xt, P ,Xg__m+1). (13)
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This process is clearly Markovian. Thus, a process Y, with a simpler
structure has been obtained, a Markovian structure, at the cost of a
more complicated state space. This can generally be done in an almost

vacuous manner for any process X, ¢ =0, £1, . . . . Simply let
Y, t=0, £1, . . . , be the process with
Yg = (Xt,Xt—l, .. .). (14)

The process Y, is a Markov process with state space consisting of points
with a countably infinite number of components. This trivial way of
imbedding a general process in a Markov process usually does not
lead to anything interesting. However, there is a variety of problems
dealing with stochastic processes where the solution basically depends
on imbedding the process cleverly in a Markov process.

There have in recent years been attempts to extend a Markov like
notion to processes with a multidimensional time parameter. We briefly
describe such a definition and refer to a paper of L. Pitt [A12] for a
detailed exposition and development as well as a bibliography of re-
lated papers. Let X, ,, be a process on the plane. Consider any domain
with a smooth boundary. Assume any event determined by observa-
tions in the domain and any event determined by observations outside
the domain are conditionally independent given data on the boundary.
If this is true for every such domain, the process is called Markovian.

b. Jump Processes with Continuous Time

A systematic study of continuous time parameter Markov processes
was given by Kolmogorov in his basic paper [43]. Among these were
Markov processes with a countable state space. The characteristic
feature of these processes is that they are jump processes, that is, in a
small time, the system described by the process is almost sure to remain
in the state originally occupicd and it will jump to another state only
with small probability. The scope of such jump processes was enlarged
by Feller in his papers [15] and [16]. We shall, in fact, generally follow
the approach given in Feller’s paper [16]. Our first object is to indicate
more precisely what is meant by a jump process. Our discussion will
be carried out in the context of a general state space 2x. The reader
may find it helpful to keep the case of a denumerable state space in
mind in which case all integrals over the state space are to be replaced
by sums over the state space. Functions p(¢,x) > 0 and II(¢x,4), with ¢
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real, xeQx and AeFx satisfying the following conditions are assumed
given:

(i) For fixed x, p(t,x) is a continuous function of ¢ and for fixed ¢
it is measurable with respect to Fx. We shall assume that p(t,x) is
bounded in ¢ x jointly so that one is led to a fairly simple theory.
Otherwise the study of jump processes becomes much more compli-
cated (see section e of this chapter for an example in which such
complications arise).

(ii) For fixed x, 4, II{#,x,4) is continuous in ¢; for fixed ¢, x, it is a
probability measure on Sx; for fixed ¢, 4, TI(f,x,4) is measurable with
respect to §x. The jump character of the process is determined by
specifying the transition behavior of the process in a small time interval.
The process is a jump process if the transition probability

P(rx;t,d) = {1 — p(tax)(t - T)}B()C,A)

+ p(t) (¢ — D(tx,4) + ot — 7) €Y
for small ¢t — 7 > 0, where
1 if xed
8x4) = [O otherwise. 2)

Notice that the probability of a change of state in time £ — 7 is of
order t — 7. A Poisson process is perhaps the simplest and most typical
nontrivial example of such a discontinuous process. In the case of the
Poisson process, the state space consists of the non-negative integers.
There p(¢,x) = » and II(4,x,4) = 8(x + 1, 4). Thus, if there is a change
of state in a small time, it is to the first order in # — 7 from x to x 4 1.

The transition probability function P(r,x;t,4) of a Markov process
satisfying the assumptions of this section can be shown to be a solution
of two integrodifferential equations

6—’;(7—:91:—_;'3’—‘4) = p(r,x){P(r,x;t,A) - / P(r,y;t,A)H(f,x,dy)} 3)

and

dP(r,x;t,A
(T:;;t ) == /; p(Ey)P(rx5t,dy) + / pUNL(t,y,A) P(r,x;5t,dy),

4)

commonly called the backward and forward equations respectively.
The derivation of the backward equation will be given in some detail.
That of the forward equation will be given in less detail. To derive the
backward equation, we consider the Chapman-Kolmogorov equation
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corresponding to a transition from time » — Ar, A7 > 0, to time 7 and
then from time 7 to time ¢ The equation required is

P(r — Ar, x; t, A) = [P(r — Ar, x; 7, dy)P(r,y;t,4). 5)

A small time transition is considered at the beginning 7 — Ar rather
than at the end ¢ (as in the derivation of the forward equation). This,
in part, explains the names ‘“backward” and “forward” equations. If
we split the range of integration on the right of (5) into Qx — {x} and
{x}, we obtain

P(r — A7, x;t, A) — P(r — A7, x5 7, {x})P(r,x;t,4)

= [P(T — Aty x5 L, A) - P(T,x;taA)] + P(T,X)ATP(T,XJ,A) + O(AT)

= [P(r,y;t,A)P(r — Ar, x; 1, dy) (6)

Qx — {z}

using the basic property (1) of jump processes. For every set 4 not
containing x, P(t — Ar, x; 7, A) /At approaches p(7,x)I1(r,x,4) as Ar — 0.
On dividing equation (6) by A7 and letting Ar — 0, the following
identity is obtained

&O‘gj—.w = P(T,x) tP(T,x;t)A) - / P(f,J’%A)H(",x,d}’)} 7

where the derivative on the left is to be understood as a left-hand
derivative. By considering a transition from 7 to r 4+ A7 and then from
T + A7 to t, the corresponding equation is obtained with a right-hand
derivative using the continuity of p{¢,x) and II(¢,x,4). Thus, the equa-
tion holds with dP/dr understood as an ordinary derivative.

The forward equation is obtained by considering a transition from
7 to ¢t and then from £ to ¢ 4 At in the Chapman-Kolmogorov equation

P(r,x;t 4+ At, A) = [P(t, y;t + At, A)P(r,x;t,dy). 8)
A more convenient form in which to write this is

PG s A 4) — Plritd)

- f Plryitdy) [P(y: £ + At, 4) — 5(,4)} /6t (9)

and the desired result (4) follows from this on letting Az — 0 by (1) and
bounded convergence. Actually, without the boundedness condition
on p(t,x), one would not get an equality in the forward relation, only
an inequality.
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It has been established that the transition probability function
satisfying (1), if it exists, should satisly the backward and forward
equations. Two basic questions now arise, that of existence of a solution
and if it exists whether it is unique. Our object is now to construct a
solution of the problem and show that it is unique. Let

Po(rxit,4) = 8(x,d) exp {— [ ! p(5,0) d;}. (10)

This is the probability of no jump in the time interval (r,). We now
construct the probability of precisely » jumps in the time interval (,t).
Introduce the function

Wt d) = [, exp {— [“pep) dsf ety (1)

We shall try to construct the desired probability recursively. Assume
that the probability of » — 1 jumps precisely in time (r,t) in going
from x at time 7 into set 4 at time #, P,_i(7,x;t,4), is already given.
Intuitively, it would follow that one ought to be able to construct
P,(r,x;t,A) out of P, i(r,x;t,4) in the following way. If precisely n
jumps have taken place in (7,t), the n-th or last jump must have taken
place at precisely some intermediate time o, 7 < ¢ < £. There will
then be n — 1 jumps in the open interval (r,0) and none in the open
interval (0,t). Thus

P,(r,x;t,A) = /t do [9 plo)T*(0,y 58, 4) Pui(7,x50,dy). (12)
T X

A similar argument in terms of the first jump instead of the n-th jump
leads to the equation

P,(r,x;t,A) = /;tp(cr,x) exp {—— f:p(:,x) ds}. (13)
/ P, _1(o,y;t,A)1(0,x,dy) do.

The functions P.(r,x;t,4) as generated from Po(r,x;t,4) by either
system (12) or system (13) can be seen to be the same on writing them
out as iterated integrals. Of course, we have been guided in our defini-
tion of the functions P, by intuitive considerations. But we have to
verify that they are in fact probabilities. Let

Su(ryx3,4) = 2 Py(rxst,A). (14)

i=0

Then by (13)
Sa(r,x3t,4) = exp { - / ! pls,%) ds} {s(x,A) (15)

+ L ! p(o,x) exp { /; ! p(s,%) ds} do [ Sn-1(oy ;t,A)II(a,x,dy)}-
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Now 0 < So(r,x;t,4) = Po(r,x3t,A) < 1. Further Sp 2 Sp—1 > 0. If
Sn-1 < 1, by equation (15)
Su(ryx;8,4) < exp { - / ! p(5,x) ds}
{1 -+ /fzp(a,x) exp {Ltp(s,x) ds} da} =1. (16)

By induction the sequence S,(r,x;f,4) is a nondecreasing sequence
bounded below by zero and above by one. Thus ,

Plryxit,d) = 3 Pyt d) = lim Su(rxst,d) <1 (17)
j=0

n—> 0

is well defined. The term P,(r,x;t,A) can therefore be interpreted as

the conditional probability of going from x at time 7 into 4 at time ¢

with precisely » jumps or changes of state. It is still an open point as to

just when P(r,x;t,Qx) = 1. P(r,x;t,A) is the conditional probability

of going from x at time ~ into 4 at time ¢ in a finite number of jumps.
Let

Luryt) = [ do [ ploy)Putryxsody) (18)

be the conditional probability of having had at least » + 1 jumps in
time (r,£) given that the system was in state x at time 7. Notice that

GII*(:;;J,A) _ Lp(t,y)ﬂ*(f,x;t,dy)- (19)

It follows from (12) and (19) that

¢
/ doy L P59 Pasa(rssondy)
t o1 * R
= — / dolf da/p(a,y)g—r-l%’:’l’—aﬂl’n(f,x;d,d}’). (20)

An interchange of order of integration and the observation that
1*(0,y;0,4) = 1I(o,y,4) leads us to the equation

]rt doy /A p(0‘1,y)Pn+1(1’,x§01,d)’)
= / ! do / P(09)T1(0,9,4) Pa(r,x50,dy)
— [{dr [ plop eyt A)Pulrciny). 21)
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This can be recast in the more convenient form
t
Pun(rxstd) + ["do [ p(09)Puss(r,xs0,dy)

= [lde [ plep)i(o, D) Palrx30,3y) (22)

by using (12). The interesting relation

Popi(7,x38,Qx) + Lapa(ryx,8) = La(1,%,8) (23)
follows from (22) on setting 4 = Qx. Now
Py(r,x;t,0x) + Lo(r,x,t) = 1. (24)

This coupled with (23) indicates that

N
P(rx;tQx) = lim 3 Pu(r,x;t,0x)

N—w n=0

lim (1~ Ly(r) (25)

equals one if and only if the limit L(r,x,¢) of the nonincreasing sequence
L,(7,x,t) is zero. But

L) < ["da [ ploy)Pulrriody)
< K [ Pulryxio0x) do (26)

since p(o,y) is bounded by a constant K. The right-hand side of (26)
is the general term of a convergent series so that L(r,x,t) must be zero.
It follows that P(r,x;t,4) is a probability measure in 4.

From the definition it follows that for 7 < XA < ¢

Pu(r,x;,4) = kﬁo [Po(r,508) Paci(\y 38, 4). 7

Of course this only states that if there are precisely » jumps in going
from x into 4 in (r,t), for some integer k (k = 0,1, . . . , n) there will
be k jumps in (r,\) and n — £ jumps in (A,). On summing over 7 the
Chapman-Kolmogorov equation (a.1) is obtained. The construction
of the functions P,(r,x;t,4) (see (13)) and the boundedness of p(¢,x)
imply that P(r,x;t,A) satisfies condition (1). The arguments given
earlier in this section imply that the function P(r,x;f,4) constructed
must satisfy both the forward and backward equations.

Let us now consider the uniqueness of P(r,x;f,4). Suppose there
were another transition probability function P*(r,x;t,4) satisfying the
Chapman-Kolmogorov equation and condition (1). P*(r,x;t,4) would
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have to satisfy the backward equation (3). If the backward equation is
treated as an ordinary differential equation, the following equation
is obtained

P*(r,x;t,d) = exp {— / *5(s,%) d;} {6(x,A) (28)
+ ﬁtp(a,x) exp {— /;tp(s,x) ds} do f P*(o,y;t,A)l'I(o‘,x,dy)}-

Clearly P*(r,x;t,A) > Py(r,x;t,A) = So(7,x;t,4). But this implies that
P*(rx;8,A) 2 Si(r,x;t,4). By iterating this argument we see that
P*(r,x;t,4) 2 Su(r,x;t,4) for every n. Therefore P*(r,x;t,4) > P(r,x;t,4).
But the inequality must be equality since P(r,x;¢,4) is already a prob-
ability measure in 4.

The boundedness condition on p(¢,x) (see condition (i)) implies that
transitions over a finite time period take place through a finite number
of jumps. To a great extent, what we have shown above amounts to
this apparently simple statement. If the boundedness condition is
relaxed, transitions can take place in a much more complicated manner.
There may no longer be a finite number of jumps with probability
one in a finite time interval. In fact, the set of time points where jumps
occur may have many limit points. Further, uniqueness of a transition
probability function satisfying the infinitesimal condition (1) no
longer follows. The more complicated behavior of sample functions
and the possible nonuniqueness of solutions are two related aspects
of the difficulties that arise when one allows for unbounded or even
infinite p(¢,x). Much of the recent work on Markov processes has been
concerned with problems of this type (see Chung [8]).

The Markov processes with stationary transition mechanism have
been investigated most extensively. If such a Markov process has a
countable state space, we refer to it as a Markov chain just as in the
case of a discrete time parameter. There are a few simple remarks that
can be made about finite state Markov chains with stationary transi-
tion mechanism. The transition probability function of a Markov
chain with stationary transition mechanism can be conveniently
written in matrix form

P(t) = (Pi,j(t)§ 2,] = 1’ 29 LI ')a t Z Oy (29)
pii(t) = PLX(r + 1) = jlX(r) = i].

The Chapman-Kolmogorov equation is then

POP(s) =Pt +9),¢ s> 0. (30)
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If P(¢) corresponds to a “‘decent” Markov chain, it will be continuous
with
lim P(¢) = L (31)
t—0+
For sufficiently small ¢, P(¢) will be close to I. More formally, given any
€ > 0, there is a 8(¢) > 0 such that for 0 < ¢ < 8(¢), |p:;(6) — 85 <&,
i,j =1, ..., n, where n is the number of states of the chain. For
sufficiently small € > 0, log A is well defined for matrices A within
the & neighborhood of I, |a;; — 8:] < & 47 =1,...,n by

log A = log (I — (I — A)) = — él (I-A¥E  (32)

As expected exp {log A} = A. Further, for commuting matrices A, B
such that A, B, AB are in the € neighborhood of I spoken of above

log AB = log A + log B. (33)

The Chapman-Kolmogorov equation indicates that the matrices P(z)
commute with each other. Thus, for sufficiently small ¢,

log P(t + 1) = log P(t))P(r) = log P(¢) + log P(7). (34)

But equation (34) will hold for continuous P(f) and ¢ sufficiently small
if and only if
log P(¢) = Bt (35)

where B is an n X n matrix. Thus P(¢) = exp (B¢) for ¢ sufficiently
small. The Chapman-Kolmogorov equation implies that P(¢) =
[P(t/n)]" for all positive integral z so that

P(t) = exp (By) (36)
for all £ > 0. Notice that B = P’(0), the derivative of P(¢) at ¢ = 0.
Since P(¢) is a transition probability matrix with P(0) = I, it follows
that

b = p(0) = Tim 250 =1 <
t—0+ t

bis = ,0) = Jim 240 > 0, < 37

Z bis = Zp:,j«n = %2 p]_ =4 =0

J
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It is interesting that the assumption that P(¢) is a transition probability

matrix of finite order n, continuous with lim P(¢) = I, is enough to
t—0+

imply that conditions (i), (ii) cited at the beginning of section b are
satisfied in the form (37). The argument used in this section to con-
struct transition probability functions in the case of a general state
space shows that any matrix B of order » with

b <0

bi.j Z Oa j # ia (38)
Zb; =0

i

can be used to construct a transition probability matrix P(¢) = exp (B¢).
Thus, the general form of a continuous transition probability matrix
with P(¢) — I as ¢ — 0 has been given in the case of a finite state space.
The backward and forward equations assume a particularly simple
form. The backward equation is simply

dP(f)
=0 = BPO) (39
or
d—pia'%(jl = z binpri(t), 1, j =1, > 1 (40)

k

while the forward equation is given by

PG
= P()B 41)
or
ol zp@k(z)bk binj = n (42)

As already remarked, the situation in the case of a denumerable state
space is much more complicated. In fact, many questions are as yet
unresolved. An extensive discussion of the current state of knowledge
on Markov chains with stationary transition mechanism and an infinite
number of states is given in Chung’s monograph [8].

There are a number of types of Markov chains that have been
investigated in some detail. We briefly discuss one such type, the
“birth and death’ processes. These processes are often taken as models
of population development through time, as might be inferred from
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their name. Let us think of j, j > 0, as the population size. The state
j = 0 corresponds to the death of the population, that is, no individuals
at all in the population. In a small time, if there is any change in
population size at all, it is either through one birth or one death. Thus

/’6,,’(0) = bo; =0
/7:;(0) =b;;=0ifj=#4,7i—1,i+1 (43)
with

E. bi,j = 0. (44)
7

An extensive discussion of the birth and death processes has been
carried out in a series of papers of Karlin and MacGregor [39]. Their
work is based on the observation that structural questions concerning
these processes are closely related to classical moment problems.

c. Diffusion Processes

We have already noted that the jump processes are roughly char-
acterized by the fact that in a short time the system will with large prob-
ability not change state, but that if it does move it will by an appreci-
able amount. Of course, this was not completely apparent in the previous
section since a topology (the concept of neighborhood or a notion
of closeness) was not introduced in the discussion because strictly
speaking it was not required. The diffusion processes are at the other
extreme. A topology is necessary here explicitly or implicitly. In a
rough and inexact way the diffusion processes are characterized by
the property that in a short time one is sure that the system will move,
but only by a small amount. The Wiener process that was introduced
in section d of Chapter 1V is the simplest and the basic example of a
diffusion process.

We shall give a limited discussion of diffusion processes on the real
line. Let F(r,£;¢,x) be the conditional distribution function

F(rEitx) = PIX() < #|X(r) = &, 7 <t 1

Since the process X(¢) is assumed to be Markovian, the conditional
distribution function F(r,£;t,x) satisfies the Chapman-Kolmogorov
equation

F(r,&5tx) = ] C Floyit)dF(rEey), r <o <t @
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The function F(r,£;t,x) determines the full probability structure of the
process X(¢) since the process is Markovian.

We shall call the process X () a diffusion process if it satisfies the
following conditions

lim 1 / dF(t — At,x3t,y) =0 3)
At—0 At B

ly—2| >8
lim 1 / (y — x),F(t — Aty x58,y) = a(t,x) 20 ©)
At—0 At

ly—zl<8
lim 1 / (y — x)d,F(t — Aty x;8,y) = b(t,x) (5)
a0 At

ly—zl<s

for any fixed positive 8. The first limit condition (3) states that the
probability of drifting away from an initial position x by an amount
greater than § in time A7 is of smaller order than A¢ for A small. Thus,
in a small time interval the particle in diffusion (if we regard X(¢) as
the position of the diffusing particle at time ¢) is almost sure to remain
in the immediate neighborhood of its initial position. The relations
(4) and (5) are conditions on the truncated variance and mean dis-
placement of the particle in a small time Az Notice that the Wiener
process satisfies these conditions with a(¢,x) = 1 and b(¢,x) = 0. This
suggests that a diffusion process X(¢) satisfying conditions (3), (4),
and (5) could be regarded as acting locally in time like a Wiener
process Y(¢) in that the change in position AX(¢) = X(¢t 4+ A — X(©)
is given to the first order by

b(t,X(2)) At + [a(t,X(1)))% AY () (6)

where AY(t) = Y(t + At) — Y(¢). This idea appears to be due to

S. Bernstein [4] and was used very effectively by K. Ito [36]. This

approach involves direct analysis of the stochastic process. Our inter-

est is basically analytic and it will therefore concern itself with the

analytic properties of the conditional distribution function F(r,£;t,x).
Assume that the partial derivatives

OF (r,E:t,x) 0°F(7,§3t,x)
98 9 Q)
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exist. Using a Taylor expansion with error term, we find that

F(T - AT, E;t, x) - F(T,E;t,x)

Ar
= 11; / {F(r,y;t,x) — F(r,8t,x)Yd,F(r — Ar, §57,9)
ly—£>6 (8)
OF(r,§;56,x) 1
$UOED L[y~ gate — an )

ly—¢l<s
62F(g,££2;t,x)AiT f ‘( E) + 0(}’ )2: dyF(‘)‘ — AT, s;,’,’y).

ly—¢l<s

+

On letting Ar — 0 and making use of conditions (3), (4) and (5), one
finds that a left-hand derivative

OF(r,5t,y) . F(r — Ar, &5t x) — F(r,£5,%)
——=222%0 = — lim ©)]
ar Ar—0 At
exists and satisfies the partial differential equation
aF F

This differential equation is a parabolic differential equation (see {74])
in the backward variables 7, £. This suggests that one ought to look for
solutions of equation (10) that have the properties of a conditional
distribution function and satisfy the Chapman-Kolmogorov equation.
W. Feller has in fact done this under a variety of boundedness and
regularity conditions on the coeflicients a(r,£), b(r,£) of the equation
(10). Notice that if a(r,£) is bounded away from zero and infinity and
infinity and differentiable in £, the equation (10) can be reduced to
an equation of the form

19%G aG
+26 P e 5o =0 an

by the transformation

= [ty 12
[ ¥ 12
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(see Problem 8 of this chapter). This implies that one might just as well
consider the simpler equation

F | 19°F

aF
3 Yoo TIEH 5 =0 (13)

If F has a sufficiently smooth density function f

F(r,&5tx) = / O fEity) &, (14)

the density function f(r,£;t,x) will satisfy the same differential equation
of , 19 8f
T R R ) (15)

We shall briefly indicate how one might construct a solution f of (15)
assuming that &(7,£) is sufficiently smooth. The argument is a heuristic
version of that used by Feller in his paper [15].

First notice that if 5(r,£) were identically zero, the transition prob-
ability density of the Wiener process

u(r,g5t,x) = [2r(t — )] exp {=15(x — §)%/(t — )} (16)

would satisfy the differential equation (15) and would have the desired
properties. Let

T w©
o) = [Tdt [7 gulnting dx. (17
If g(¢,x) satisfies a Hélder condition of the form
|g(tax) - g(t,5x,)l < K“t - tlla + Ix - xlla}) a>0 (18)

in a neighborhood of every point (4x), one can show that the partial

. 8G 9G 9°G . . .
derivatives o 9F 9 of G exist and that G satisfies the partial
differential equation

aG | 19%G
O + 3 52—2 = —g(n,%) (19)

(see Problem 9 of this chapter). Consider now using the following
iterative procedure. Let

fo(‘r,f;t,x) = u("',f%x)
frntrtitn) = [(ap [ 000 LD pioipgy gy 0
n=201,
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With sufficiently strong regularity conditions on the function b(r,£) one
should be able to show that all the functions f, are well defined and
smooth and that

Goir | 18%Fus _ _y O
If the series =f, and the appropriate series in derivatives of f, converge
rapidly enough

f= 21 (22)

will be a solution of the differential equation (15). Of course, this solu-
tion is one obtained by a successive approximation. Feller [15] has
also shown that the function f(r,£;¢,x) constructed above also satisfies
the partial differential equation '

ad
%232 (b(t,x)f)

(commonly called the forward equation) in the forward variables #, x
under the boundedness and regularity conditions on a(fx), &(¢x)
referred to. If a(t,x) 5% 1 the partial differential equation

&

19 9
=535 (alt,x)f) ~ F (b(t,2)f)

would be satisfied in the forward variables. This differential equation
is sometimes referred to as a Fokker-Planck equation [18].

d. A Refined Model of Brownian Motion

We have already remarked that the Gaussian process X(),
0 <t < o, with X(0) =0, mean EX(¢) = 0 and covariance func-
tion EX(£)X(r) = min (¢,r) has been used to represent the position of
a particle in Brownian motion at time ¢ Here, the diffusion constant
has been set equal to unity for convenience. The process is Markovian
and its transition probability density

bt =1y — %) = %P[X(t) <yX() = #]
= Rr(t — I Fexp {—( = 0Y20 =D} (1)
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satisfies the forward differential equation

ap 1%
a2 2

in y, ¢ and the backward differential equation

T T zaw ®)
in x, 7. However, this model is unpleasant in that it leads to nondiffer-
entiable sample functions, that is, the particle in Brownian motion
has no well-defined velocity. This is suggested by the fact that the

difference quotient

X(t + h) — X()
kT )

does not converge in mean square as £— 0. In fact, it is readily
verified that the second moment of the difference quotient (4) diverges
as b — 0.

Ornstein and Uhlenbeck [58] constructed a model of Brownian
motion in which the particle in diffusion has a well-defined velocity.
We first introduce the random process U(f) describing the velocity of
the particle. U(¢) is given in terms of the process X(¢) as follows

U(t) = Ve exp (—B)X(e?), —0 <t < o, 5)

It is clear that U(¢) is a Gaussian process since it is derived from the
Gaussian process X(f) by (5). The first and second moment properties
of U(t) are therefore enough to characterize the full probability struc-
ture of the process. The first moment is identically zero since

EU(t) = vV a exp (—BH)EX () = 0 (6)
and the covariance function is given by

EU@)U(r) = a exp (—B(t + 7)) EX () X(¢27)
a exp (—B(t + 7)) exp (28 min (47)) Q)
a exp (—Bjt — 7).

Thus U(f) is a strictly stationary process. In fact, U(¢) is just X(z)
appropriately modified so as to make it stationary. This has been
accomplished by a change of scale in time so as to take zero into — « and
a renormalization by exp (—@¢). Further U(t) is Markovian since it is
obtained from X(¢) by an instantaneous one-one transformation and
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X(t) is Markovian. The process U(¢) is usually called the Ornstein-
Uhlenbeck process. Notice that the Ornstein-Uhlenbeck process satisfies
the formal equation

dU(t) + BU(®t) dt = v/ a exp (—Bt) dX(e2*) =~ v/2aB dX(1). (8)

Here \/2af dX(t) can be regarded as a random impulse where 24 is a
measure of the mean square displacement of the impulse and 8 is a
friction coefficient. We shall set @ = 1 for convenience. The transition
probability density of U(f) can be written down readily using the
properties of X(¢). Since the increments of X(¢) over nonoverlapping
intervals are independent, it follows from (5) that

U@®) — exp (=8t = 7)) U(1), ¢ > 7, )
is independent of U(r). Therefore the conditional expected value

E[UW|U()] = E[U{t) — exp (—B(t — 7)) U(n)|U(r)]
+ exp (=Bt — 7)U(r)
= exp (=B — 1) U(r) (10)
and by formula (7)

E[{U(®) — exp (=Bt — m)U)}*|U(x)]
= E[U(t) — exp (=Bt — n))U@)]
=1—exp (—28(t —1)),t>r. (11)

The conditional distribution function of U(¢) given U(r) is Gaussian
since the process U(¢) is Gaussian. The conditional mean and variance
of U(z) given U(r) are (10) and (11) respectively. It then follows that
the transition probability density

prity) = %P{U@) <UG) = 4

= (2x)~¥[1 — exp (—2B(t — 7))]™* (12)
exp { —[y — exp (—B(t — 7)x]*/2[1 — exp (=28(¢ — 7))]}.

Further, notice that

E[U{t + b — UM|U®] = exp (=BT — UQ)
= —BrU() + o(h) (13)

and

E[{UC + b — UBPU®]
= E[{U(t + k) — exp (=BR)UQ) + U®)(exp (=1 — D}}|U@]
=1 — exp (—28h) + U(®)*(exp (—Bh) — 1)
= 2Bh + o(h). (14)
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This indicates that the transition probability density satisfies the for-
ward equation

"—”—B +B—(p) (15)

in y, ¢ and the backward equation
a 9? i)
J—’ =8 axI; Bx _é (16)

in x, 7. Of course, this could be verified directly.
If the velocity of the particle is to be described by U(¢), the position
of the particle must be given by

B(t) = ﬁ] " Ula) da (17)

assuming that the particle starts at zero at time ¢ = 0. The process
B(?) is Gaussian since it is derived from a Gaussian process by a linear
operation. The mean

EB(t) = L "EU(a) da =0 (18)
and the covariance

EB()B(r) = jo ! ﬁ) " EU(a)U(b) da db
ﬁ)’ﬁ)’ exp (—Bla — b|) da db

max(¢,7) min(t,r)

exp (—B(a — b)) dbda

min(t7) 0 min(l,7) a (19)
v exp (—B(a — b)) db da
/]
2

B min (¢7) + B [exp (—B min (4,7))
+ exp (—B max (47)) — exp (—8lt — 7|) — 1].

Clearly if we set 8 = 2, for large ¢, 7 and |¢ — 7| the process B(t) looks
very much like the process X(¢). However, the process B(f) is not
Markovian. If B(¢) is considered jointly with U(t), a two-dimensional Markov
process is obtained. Let us see what the equation satisfied by the transition
probability density looks like. By (13) and (14)

E[U + k) — UD[U®), BO)] = —BrRU(E) + o(h) (20)
and

E[{U(t + k) — UDO U@, B®)] = 26k + o(h). 1)
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Further
t+h
E[B( + ) — BOIUW, BO) = E| [ U dalU(® | ©2)
t+h
= E[ [ (U@ ~ exp (=Bla = 0)UE)} dalU®) |
' t+h
+ [ exp (—B(a — 1)) da U(t)
= hU(t) + o(h) t
while
E[{B(t + k) — BO)}|UQ®), B®]

t+h

- E[{j U(a) da}le(t)] = 0. (23)

t
Notice that (21) and (23) imply that

E[{B(t + k) — BO}{U(t + k) — UDHUQ), B@t)] = o(h). (24)
The transition probability density

Plruvitey) = ?a%% PIB(&) <y, UG) < 2|B() = u, U(r) = 0] (25)

of the Markov process (B(¢),U(¢)) should therefore satisfy the forward
equation

% _ %% 150 iy -2

in x, y, ¢ and the corresponding backward equation in v, #, 7. This is a

two-dimensional diffusion equation that is singular since the second-
order partial derivatives in y do not appear.

e. Pathological Jump Processes

In section b of this chapter, it was established that the transition
probability function of a jump process satisfied both the backward
and forward equations (b.3) and (b.4) under certain uniformity con-
ditions. We shall construct simple examples of stationary denumerable
state Markov chains with transition mechanism that do not satisfy the
forward or backward equations. This “pathological” behavior is due
to the fact that the boundedness of p(t,x) assumed in condition (i) of
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section b is not satisfied. The first process constructed will behave very
much like a pure birth process locally in time.

Let
bi; = —b;
bi,i+l = b,’ >0 (1)
b,',=01f]9£l,t+1
where 7,7 = 0,1, 2, . . . . Here, of course, we are labeling the states
of the process as 0, 1, 2, . . . . The forward equations then are

i 0) = biapiia(t) — bipii(t) if j 21

pLo(®) = —bopio(d), if j = 0. (2)

Call the solution of this set of equations satisfying the condition
£ii(0) = 8:; (3)

£9(2). It will be convenient to make use of the Laplace transform in
the following discussion (see [1]). Let

9) = [[7 e d. @

The differential equations (2) become the following simple set of
linear equations in terms of the Laplace transforms £{%(s)

sPO(s) — 85 = biap_1(s) — b;pO(s) if j > 1

PR — b0 = ~bopT(s) ©)
since
® o stp! ___—a,,°° © sty .
/;) 4 ll’i,j(t) dt € 'Pm(f) ’0 + 5/;) € t[’u:(t) dt (6)
= —55,,' + sﬁif’]’(s)
A small computation leads to the solution
0 if j<i
o) = ! J
PO {[[ b/ T1 G+ b i > M
k=i k=i

The discussion of section b indicates that p{(t) > 0
0<Zp0@® =1—h(t) <1 (®)
7
and that A;(f) is nondecreasing. In fact, one can show that 4;(t) = 0 if

and only if
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and that otherwise 4;(¢) is strictly increasing (see Problem 10). Of
course, 2 1/b, < « means that the b,’s diverge rapidly asn — «. The
specification (1) means that a system in state  in a short time will with
large probability either remain in 7 or else will move one step to the
right. The system cannot move to the left. The path of the system
through time can therefore be regarded as a continual drift to the right
through states of increasing magnitude. () can be thought of as the
probability that the system starting at ¢ has passed through all the
states in the finite time ¢. Further, we can provide a “sink” or absorbing
state at infinity where the system is lodged after it has passed through
all states. Thus A;(¢) is the probability that the system has passed into
the adjoined state at infinity from state 7 in time ¢. However, instead of
adjoining an absorbing state at infinity, we can immediately return the
system after it has drifted out of the finite states to the state ¢ with
probability «; > 0, Za; = 1, and start it out again with the same
transition mechanism as before. The probability p{®(¢) can then be
interpreted as the probability of going from 7 to j in time ¢ without
ever passing out of the set of finite states. The probability

PO = [ aupe — 1) dhia) (10)
k

is the probability of going from 7 to j in time ¢ while having passed out
of the set of finite states exactly once. Similarly

P = [ anpin(t = 1) dh(r) an
k

is the probability of going from 7 to j in time ¢ while having passed out
of the set of finite states exactly m + 1 times. Let

P = Z 0. (12)

By using Laplace transform techniques we shall show that

2[);,5(1) =1, (13)

Let h(s) and p¢P(s) be the Laplace transforms of Ai(f) and p{ (1)
respectively. Now (11) implies that

P06 = s Z b (OG) )
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so that
pmi(s) = S"’*‘(% ak/'zk(S))"‘(% a H0(s)) uls). (15)

The transform f;(s) of pi;(¢) is therefore given by
Fii(s) = pO(s) + shi(s) (Z apis()/ (1 = 2 alu(s)).  (16)

Since

R =1~ zp%) a7

it follows that

Z Bii(s) E FEO(s) + shi(s) (2 2 akﬁ“”(f)) ( - 2 ad‘m(&))

i

J
="—/1(~f)+h(s) }7 (18)
the Laplace transform of one. Thus (13) is verified.
The backward equations are
pii(0) = bipinri(t) — bipii(t) (19)
or
$pii(s) = 8ij = bifirri(s) = bifii(s). (20)

The probabilities p{°)(¢) satisfy the forward equations since they were
derived as solutions of those equations. They also satisfy the backward
equations as is seen by simple inspection. Further, the Chapman-
Kolmogorov equations follow also since

— 4500 = ) BB, 21)

3
However, I p2(¢) < 1 for ¢ > 0 when 2 1/b, < .
F)

The probabilities p;;(¢f) yield a true transition matrix since
2 pij(t) = 1. They satisfy the Chapman-Kolmogorov equation (see
J

Problem VI.12). Moreover they behave locally like the probabilities
p9(#) since the derivatives

0 otherwise.

—b; if j=1
pi,0) =4 b if j=i+1 (22)
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This follows from the fact that lim [s%5;;(s) — sé:;;] = p. (0). Simple

8§~ 0

substitution in (20) indicates that the probabilities satisfy the back-
ward equations. However, they do not satisfy the forward equations.
Instead forward inequalities

P15 > biapiia() — bipii(t), § 21 23)
pio(t) > —bopi,o(t)

are obtained for ¢ > 0. Limiting stationary probabilities p; = lim p; ;(¢)
f—>®

can be evaluated
. 1
pi = lim sp;;(s) = 1 z ak/(z ay z —)- (24)
50 bf b”‘
k<j & m>k

Let us take these limiting probabilities as the initial distribution so
that we have a stationary Markov chain. If time is reversed a new
stationary Markov chain with the same stationary initial distribution
p: and transition probabilities

3:.i() = pip;i(8)/p: (25)

is obtained. The backward and forward equations of the new chain
are the forward and backward equations respectively of the original
chain. Thus, the transition probabilities ¢;;(¢) of the new chain now
satisfy the forward equations but only backward inequalities are
satisfied.

By combining the chains with transition probabilities p;;(¥) and
¢,;(¢) respectively in the proper manner a chain whose transition prob-
abilities satisfy neither backward nor forward equations can be con-
structed. Let us consider a chain with doubly indexed states (7,i"),
i, ¢ =0,1, 2, .. .. Let the stationary probability of being in the
state (,¢’) be given by

PIX() = (i,0)] = pips. (26)
Further set the transition probability equal to

PLX() = (j,i)X(r) = (i4)]
= pii(t — )gr it — 1), T < L. (27)

The transition probabilities of this chain satisfy neither the backward
nor forward equations.
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f. Problems

1. Let M;, M,, . . . be independent and identically distributed

random matrices. Set T, = n M;. Show that the sequence of
i=1

random matrices T, can be considered a Markov process. Examine

ET, in terms of the distribution of the random matrices M;.

Consider also ETE.

2. Suppose the M, in the previous example are random transition
probability matrices. Can you give more dectailed information
about the limit behavior of T, as n — «?

3. Consider a strictly stationary process X, n = 0, +1, +2, . ..
where the random variables X, take only the two possible values
0,1. Let Y, n =0, £1, . . . be the stationary process obtained
by setting Y, equal to the binary expansion ¥, = . X3 Xy - - - .
Show that ¥, is Markovian and determine the transition mecha-
nism of this Markov process.

4. Consider the following idealization of a telephone trunking prob-
lem. Suppose infinitely many trunks or channels are available and
that the probability of a telephone conversation ending in the
interval (¢, ¢ + 4) is uh to the first order. Further assume the prob-
ability of a new call coming in during the interval (¢, ¢ + 4) is M\A
to the first order. The system is in state 7 if n lines are busy. Show
that the generating function P(s,¢) = Z po,.(f)s™ satisfies

n

aP/at = (1 — s) {—xp+#%§ .

Solve for P(s,¢) and find the limit behavior of po,.(f) as ¢t — .

5. Let X(¢#) be the Wiener process. Consider the derived process
Y() = X(¢) if max X(r) < a and a otherwise where a > 0. Is
0<r<t

Y(¢) Markovian? Find the probability structure of the process ¥ (¢).
Can you physically interpret what has been done to the process
X(t) to obtain the process Y (¢)? Show that the transition probability
density of the Y process satisfies the heat equation away from a?

6. Let X(#) be the Wiener process as in the previous example. Let

_ X if X)) <a
Yo = {Za — X0 X0 >
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10.

11,
12.

Answer the questions posed in the previous problem with respect
to this process.

Let X(f) be the Wiener process. Let Y(¢) = X(¢) — [X(¢)] where
[x] is the greatest integer less than x. Answer the questions posed
in the previous problem with respect to the process ¥ (¢).

Under the assumption that a(r,£) is bounded away from zero and
infinity and differentiable in £, show that the differential equation

aF 1 ?*F oF .
3 + 3 a(r,£) PP + b(r,8) 3% 0 can be reduced to an equation

aG | 109G G .
of the form o + 3 ot -+ ¢(r,m) i 0 by the change of variable

e ——
n= [ d/Val).
Show that if g(¢,x) satisfies a H5lder condition of the type (c.18) and
T ©
G(r,b) = ﬁ dt / " el muln, kst dx

aG aG 9°G
that

at == BE 98 exist and G satisfies the differential equation

G | 190G
T tagE = e,

Hint: See the paper of E. E. Levi [49].

Show that in the case of a pure birth process 2 p{3(¢) = 1 if and
only if 21/b, = . ’

Show that the p{%(¢) of section e satisfy the backward equations.

Show that the p; j(¢) of section e satisfy the Chapman-Kolmogorov
equation.

Notes

1. Generalizations of the Markovian concept for processes with multidimensional

time were initially discussed by P. Lévy (see [51]). More recently there has been
renewed interest on these questions and some rather interesting results (see the papers
of Dobrushin [A3] and L. Pitt [A12]).

2. The discussion of Markov processes given in this chapter is basically classical

and analytic in character. This was thought to be a most effective presentation in an
introductory book. Of course, this means that much of the recent work on Markov
processes, particularly that concerned with analysis of regularity properties of
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sample functions of the process as well as that utilizing semigroup techniques to
obtain properties of the process, is not discussed. We make a few brief remarks to
indicate how a semigroup arises naturally when dealing with a stationary transition
mechanism. It is obvious that one is dealing with a semigroup of matrices in the
case of a Markov chain. Nonetheless, it is worthwhile making a few remarks in the
case of a general state space. Let P(t,x,4) be a stationary transition probability

function
P(t,x,A) = P[X(t + 1)ed|X(z) = x), ¢ > 0,

satisfying the analogues of conditions (i)-(iii) of section a for a stationary transition
mechanism. We can alternatively construct a semigroup of operators acting on
probability measures or functions in terms of P(¢,x,4). First consider a probability
measure g on Fx. The transition probability function takes u into a probability
measure »

o) = [ m@PGRA) = (TOR) ().

The family of operators 7®, t > 0, is a semigroup

TOTE = T ¢ 7 >0,
since

[ PPy, ) = PG 47,5, 4).

One can also construct a family of operators §®, ¢ > 0, taking bounded functions
f into bounded functions g

6@ = [ SOPGxD) = (D).

Notice that S® is a positive operator since it takes non-negative functions into non-
negative functions. The family of operators S®, ¢ > 0, is a semigroup

SOSE = §Etn 4 7 > 0,
because of (a.1).

3. Kolmogorov’s paper on analytic methods in dealing with jump and continuous
Markov processes [43] is an early basic paper. It is well worth reading since many
of the approaches later elaborated and refined are presented there. Under appropriate
conditions one can show that there is a representation of diffusion processes with con-
tinuous sample functions (see Doob [12]). Even when dealing with jump processes one
often wants a representation with right continuous sample functions. The example
mentioned in the last paragraph of section e shows that this may not be possible to
achieve.



WEAKLY STATIONARY PROCESSES
AND RANDOM HARMONIC ANALYSIS

a. Definition

In Chapter V stationary processes (sometimes called strictly sta-
tionary processes) were motivated and discussed as models of natural
phenomena. We will now consider a related class of processes commonly
termed weakly stationary processes. Though the name would appear to
imply a larger class than that of the stationary processes, this is not
quite the case. These processes are characterized essentially by their
second moment properties. Let X(w), — o < ¢ < o, be a continuous
time parameter complex-valued process with finite second moments
E|X,(w)|? < «. For convenience we shall take its mean EX,(w) = 0.
X (w) is called a weakly stationary process if its covariance function

EX(w)X,(w) = r(ty) = r(t — 1) )

depends only on the time difference ¢ — 7 and is continuous. Notice

that the continuity of 7(¢) implies that X,(w) is continuous in the mean,
that is,

ElX(w) — X,(w)|>*=2r(0) —r(t —7) —1(r — ) >0 2)

as t — 7 - 0. It is clear that a stationary process with finite second
moments must be weakly stationary while the converse is not true.
On the other hand, if a stationary process has infinite second moments
it is meaningless to speak of weak stationarity.

The covariance function 7(¢) is positive definite (see section b,

Chapter IV) since for any given finite number of points ¢, . . . , &
and complex numbers ¢1, . . . , &
k E
2 Ci?jf(ti ot tj) = EI 2 Cngi(lO)iz Z 0. (3)
ii=1 i=1

Now Bochner’s theorem (see section b of Chapter VI) implies that
149
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r(t) is, except for a constant factor, a characteristic function. Therefore
r(t) has a Fourier-Stieltjes representation

(1) = [, é2dr) )

where F(}) is a nondecreasing function with F(+ ) — F(— ) = lim
Lo

[F(L) — F(—L)] = r(0) finite (not necessarily one). For convenience
F(\) is assumed to be continuous to the right. The function F(\)
is called the spectral distribution function of the process X,(w). Here
dF(\) is the weight to be attributed to ¢** in the frequency resolution
of r(¢). We refer to (4) as a frequency resolution because the covariances
r(f) have been partitioned into components e* dF(A) corresponding
to the frequencies \. Notice that in the case of a real-valued process
X r(t) = r(—1t) so that the spectral mass is symmetrically located about
zero, that is, dF(A\) = dF(—M\). If F is absolutely continuous with
respect to Lebesgue measure, its derivative f(A\) = F’()) is called the
spectral density function of the process.

Suppose the continuous parameter process X, is observed only at
the discrete time points ¢ = kA, £ = 0, 1, . . . . The covariance
function of the corresponding discrete parameter process Xia is 7(kA) =
EX(uyaXia (also called weakly stationary because the covariance
function depends only on time differences). Notice that r(kA), £ = 0,

+1, . . . is a positive definite sequence. Now
r(kA) = [ e dR()
@i+
® a
= e\ dF(N)
j=—» (2j—Dr
a
= / 3' ¢+ dG(N) (5)
“a
where

o= 3, o+ 2)- (5}

The range of the frequency resolution of the sequence r(£A) is [ - % % ’
a finite range. The spectral distribution function G(A) of the discrete
parameter process Xza is obtained from the spectral distribution func-
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tion F(\) of the continuous parameter process by a folding operation
(see (5)), an effect called ““aliasing.” A point A is called a point of
increase of Fiffor all A\;, Az withA; < XA < Azonehas F(Ay) — F(A;) > 0.
Notice that aliasing means that the spectrum of the continuous param-
eter process JX; cannot be completely determined from that of the
process discretely sampled Xia unless the spectrum of X; is “band
limited,” that is, the points of increase of F are limited to a finite
interval. Nonetheless, one can, of course, obtain considerable informa-
tion about the spectrum through discrete sampling. The spectral
density g(A) of Xka is given in terms of f(A) by

=Y s(+2) w<l ©

j=—

As is implied by (5), a formula paralleling (4) holds for discrete param-

eter weakly stationary processes. Let X;, £ = 0, £1, . . . , EX; =0,
be a discrete parameter stationary process so that
EXkX,' = Tk—j. (7)

The covariance sequence i is positive definite and hence by an ante-
cedent of Bochner’s theorem due to Herglotz (see [53]) 7 has the
representation ‘

re = [ T e dF(\) (8)

with F a nondecreasing bounded function. The function F as before
is called the spectral distribution function of Xj.

A simple example of a discrete time parameter stationary process
is given by

X, = kﬁ Ge@te, 1 =0, +1, . .., ©)
=1

where the ¢; are real constants, the \; real numbers in [—m,7] and the
¢r independent random variables uniformly distributed on [—m,r].
This example arises in the theory of noise (see [26]), where the noise
current at time ¢ is considered a superposition of alternating current
components of frequency Ax/27 cycles per second with amplitudes cx
and random phases ¢. It is called the model of random phases. The
mean value of the process is zero

EX, = Z %rck/ eihted dop = 0 (10)
k=1 -



152 Random Processes

and the covariance function

n
EX X, = z c? 2l7r / FE=N oy
k=1

= z it = / " g dF(\)

k=1

(1)

because of the independence of the ¢;. The spectral distribution func-
tion F is the nondecreasing step function
FQ\) = Z el (12)
e SA
The second model is a representative example of some that enter
in econometric discussions [48]. Let X,, }; be the price and supply

respectively of a specific commodity at time ¢ = 0, £1, . . . . The
price X; and the supply Y; are linked by the difference equations

Xt=a—ﬁYt+"h'

Y, = v+ 06Xy + 77/’ (13)

where @, 8, v, & are real constants and 3./, 7/ are random variables
representing the random disturbances that this aspect of the economic
system are exposed to. On solving for X; we obtain

X, =a— By —B6Xi_1 +n' — B (14)

This is a stochastic difference equation of order 1. Difference equations
of this type will be discussed in some detail in section c.

It is clear from the representations (4) and (8) that the second-
order properties of weakly stationary processes canr be examined using
either their covariances or spectra since they are equivalent. In certain
communication problems in engineering, the message transmitted is
represented by a continuous time parameter weakly stationary process
X.. Suppose the message is passed through a linear filter §. Then the
output of the filter is given by

Yz = ith = [_eooo g(l - T)X(T) dT
= [1, 8¢ —x@) dr

It is physically plausible to assume g(#) = 0 for ¢ < 0 and we have done
this. The function g(¢) is called the transient response function because

(15)



Random Harmonic Analysis 153

g(t) dt is the output at time ¢ due to a small pulse of height one and
length dt at ¢ = 0. To make (15) meaningful we assume g to be in-
tegrable. Consider the covariance function of the output

cov (Y" Yf) = .[fg(l - a)g(r - ﬁ) cov (XmXﬂ) do dﬂ
= [Jgt — a)g(r — B)r(a — B) da dB (16)
= [rwfg(r — t + u — a)g(—a) da du.

Notice that the covariance function of the output is obtained from the
covariance function of the input by an operation that is computa-
tionally often quite messy, the convolution operation. The correspond-
ing transformation in the spectral domain is much simpler since as we
shall see it is simply a multiplication. Using the representation of the
covariance function in terms of the spectral distribution function

cov (YY) = [fg(t — a)g(r — B) [P dF(N) da d

= [elt=My(\)|* dF(N) (W]
where

() = Jeifg(1) dt. (18)

Thus the spectral distribution function G(A) of the output is related
to that of the input by the simple relation

dG(\) = [yW)[* dF(N). (19)

The function y(\) is called the frequency response function because
its absolute value measures the amplification at frequency A due to the
filter. The preference for speaking in spectral terms in the engineering
literature is due in part to the simple transformation properties re-
ferred to above.

b. Harmonic Representation of a Stationary Process
and Random Integrals

A stationary process X; has a random Fourier representation
paralleling that of its covariance function (see (a.4) and (a.8)). A
detailed derivation of this representation will be carried out in the
case of a continuous time parameter process. It is readily seen that an
analogous argument will yield the corresponding result if time is
discrete.

Let F(\) be the spectral distribution function of X;. Let X, u, A < g,
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be continuity points of 7. We introduce the random variable
1 (T B
= — —ita
Zr(u,\) 5 ]—TXt/x e~ doy dt 1)
_ 1 T et — piN
=5 /_TX, 5 dt.
Nowif 0 <7< T

"
Bz~ 20 = B [ [ aaa
. > @
<[<T

.l © /‘p ) , 2
= —it{a—u,
pcs [_w dF (u) . € da dt
<||<T

making use of the Fourier representation of the covariance function.
The function

2

[ ete dacde 3)
<|ti<T
converges uniformly to zero as 7, T— oo if |u—pul, |[u—A] > ¢ where
€ is any fixed positive number. For

T T g3 —_ — Q1 —_
//"cosz(a—u)dad¢=f Sintp —w) —sintA = 1) 4 (g
T A T
and

¢

cos t(u = u) |7

t(p —u)
<2 ( _1. + l) ;
™ T/ |p—of
Also a direct estimate using the oscillatory character of sin ¢/¢ shows
that expression (3) is uniformly bounded in absolute value.

Thus
EIZT(/"’,A) - Z‘r(lhx)l2 —0 (5)

as 7, T — « and hence, by the Riesz-Fischer theorem (see section a of
Chapter IV) Zr(u,\) converges in mean square as 7' — o to a limiting
random variable that we shall call Z(u,\). We consider now the com-
putation of the covariance

E(Z(u\)Z(W"N")) O

where, for convenience, u, A, p’, A’ are taken to be points of continuity
of the spectral distribution function F(A) of the process X:. These
covariances exist since

E|Z(sM)]* = Jim E|Zr(uM)|? ™)

t

[Tsint(u—u)dt|<

T cos t(u — u)
/, e p—

7
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is finite. Now

E(Z(uN)Z(W X))

}im E(Zr(u,\) Zr(u',X7))

N T T »
71:11 pe) /-w dF(u)A 2/)‘ cos ta — u) da dt

T ’
/ 2 / “cos (e — u)dod . (8)
Jo Y

Note that
T T g — ) — —
/ [” cos ta — u) da dt = / sin t(u — ) — sin {A — ) dt. (9)
0 N 0 t
We now use the fact that
T -

lim / sinta , _ / sinta , _ 7 (10)
T—o JO ¢ 0 ¢ 2

for a > 0 (see Courant’s Integral and Differential Calculus, p. 450). Thus

rifA<u<yp

, :
l’im/ /"cost(a—u)dadt= Oifp <woru <Ay,
T=e= JoJx 72—rifu=)\oru=p.

In fact, the convergence is uniform if « is bounded away from A and p.
On interchanging limiting operations in (8) it is seen that

min (g,u")
dF(u) = F(min (g,u’)) — F(max \,\'))
STy ) )
E(Z(mN) Z(u'\) = {max(x,x') if min (g,u’) > max AN)  (12)
0 otherwise.

Thus, if (\,z) and (\',u") are disjoint intervals Z(u,\) and Z(u',\’) are
orthogonal, that is, they are uncorrelated. Notice that (12) implies that

E|Z(u\)|? = F(u) — FQ\). (13)
Since
E|Z(u\) — Z(g\)|2 = |[F\) — FQ")| — 0 (14)
asA, N > —
,\f‘f‘,, Z(p\) = Z(u) (15)

exists as a limit in mean square. Using the definition (15) it is readily
seen that

Z(pN) = Z(w) — Z(). (16)
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Property (12) can be rewritten in terms of the process Z(u) as

E(Z(w) — ZMW)(ZW) = Z\) =0 (17)
if (\,p), (\',¢’) are disjoint and
E|Z(u) — ZM)|? = F(u) — F(\), (18)

or even more intuitively in differential notation

EdZ(\) dZ(g) = 6r, dF(N) (19)

where 8, is the Kronecker delta. Such processes Z(M\) are typically
called processes with orthogonal increments. We have in the discussion above
limited ourselves to continuity points A of F(A) to avoid the additional
fuss and notation required at discontinuity points. However, the process
Z(\) is readily defined at discontinuity points A of F by setting

Z\) = lim Z(u) (20)
et

where p approaches X from above through continuity points of F. Of
course, this can be done since the continuity points of ¥ are dense
everywhere.

A random Stieltjes integral of the form

JeO) dZ(\) @1n

with g a fixed function and Z a process of orthogonal increments can
be introduced in the following way. The integral is first defined for
step functions, that is, functions g of the form

. r ifak_1<)\§ak k=1,,l
s = {O otherwise @2)
where — o < a9 < - - - <@g < . For such a function g we define
fg(\) dZ(A) as
[0 dzo = Y alz(@) - Z(@-) (23)
k=1

Notice that

E [ [ a(\) dZQ\) r

E lge?[F(ax) — F(ai-1)]
k=1

[ la)lz duy) (24)
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since Z is a process with orthogonal increments and pu is the measure on
the real line generated by F. The integral will now be defined for any
bounded continuous function g. Given any such continuous function g,
there is a sequence of step functions g, of the form (22) such that

Jlg®) — gaM)|2du—0 (25)
as n — «, Let J, be the random variable
Jn = fga(\) dZ(N). (26)
Then
ElJy = Jul* = [lga0) — gn(N)[2 du—0 (27)

as n, m — «© by (24) and (25). By the Riesz-Fischer theorem J, con-
verges in the mean square to a random variable J with

EVP = lim' E|T,[2 = [lg®)[* du(h). (28)

It is natural to define [g(A\) dZ(\) as J since J does not depend on the
particular sequence g,(\) by which g is approximated. This follows
from a simple application of the Minkowski inequality (see [1]).
Actually this integral can be defined for the larger class of Borel func-
tions g for which [[g(A)|2 du()) is finite by a similar argument. This
integral has the following typical properties of an integral and these
properties can be derived formally by considering approximating step
functions and going to the limit:

1. [lag() 4 6h(N)] dZ(N) = afg(N) dZ(N) + bJh(N) dZ(N)  (29)

2. lim [ga(\) dZ(\) = fg(\) dZ(N\) (30)
if and only if
Jlgn®) = gM)[? du(h) — 0 (31)
asn— o,
3. Efg) dZ(M\)JA(N) dZ(N) = [¢WRDY) du(h). (32)

We shall now show that a weakly stationary process X, has a random
Fourter representation in terms of a process Z(N) with orthogonal increments,
that is,

Xe= [T enaz, (33)
where Z(M\) is the process given by (15). Further
EdZ(\) dZ(k) = 8. dF(\) (34)
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where F(N) is the spectral distribution function of X,. Let N\, u be continuity
points of F(A), A < u. Now

— T
EXZ;Gih) = 51; /_Tr(t — ) ﬁ ¥ gire det dr

. 1 [T (&
= / eite dF (u) ~ / / cos 7(@ — u) da dr
— 0 T Jo A (35)
® T o —_ —_ Q] —_
_ / i dF(u)l/ sin 7(u — u) — sin (A — w) &
— ™ Jo T
- / " gite dF ()
A

as T — o, making use of (1), (10), and the Fourier representation of
the covariance function r(£). But

EX[Z(w) — ZN)] = EX;/ dZ(\) = /’)\u eitv dF (u) (36)

since Z(u) — Z(\) is the limit in mean square of Zy(A\,u) as T — .
There is a sequence g,(\) of step functions of the form (22) with jumps
at continuity points of F(A) such that

J1gn(A) — €2 dF(\) — 0 (37

as n — . Therefore [g.(\) dZ(\) — [ei* dZ(\) as n — . Relation
(36) implies that

EX\[ga(N) dZ\) = [e*gu(N) du(N) (38)
and hence
EXJe™dZ(\) = lim EX/Jg.(\) dZ(\)
= lim [ei*rg,(\) du(\) = [dF(A). (39)
Now
E|X, — [e™dZ(\)|? = E|X|* — 2 Re EX,Je™ dZ(N) + E|fei* dZ(\)|?
=0 (40)
using (a.4), (32), and (39). But this implies that

X, = / " endz() (41)

with probability one.
Of course, a corresponding representation holds in the case of a
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discrete time parameter weakly stationary process X,, n = 0, +1,
+2, ..., except that in this case the range of integration in the
random Fourier representation is [—m,r] instead of (— 0, )

Xo= [T o™ dZ0), EdZNTZG) = bnu dFN). “2)

Here, F()\) is as before the spectral distribution function of the process
X.,.. Notice that in the representations (41) and (42) there is a random
frequency resolution of the processes with dZ()\) the random amplitude
of ¢, The random amplitudes dZ(\), dZ(u) corresponding to distinct
frequencies A 7 p are orthogonal and the variance of dZ()\) is given
by dF (), (see (42)).

We shall use the random spectral representation of a weakly
stationary process obtained above to derive a mean square ergodic
theorem for a discrete parameter stationary process. Let X, be a
weakly stationary process with mean EX, = m not necessarily zero.
Our object is to investigate the behavior of the time average

- z X (43)

as n— ». Let AZ(0) = Z(0) — Iin:- Z(—e) = Z(0) — Z(0—) be
e—0
the jump of Z(\) at zero. Of course AZ(0) = 0 if there is no jump. We

shall show that the time average % z Xy, converges to AZ(0) + masn— .
k=1

The random variable X}, — m has the Fourier representation

X, —m = /_ 6B dZ(\) = /_’ e dZ'(\) + AZ(0)  (44)

where
PPN PA 0 ifA<O
0 = {ZO\) —AZ(0) ifAr>0. (#5)
Notice that
EdZ'(\) dZ7(w) = &, dF'(A) (46)
where
v _ JEXN fA<O0
Foy = {F(x) — AF(0) A0 (#7)
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is continuous at A = 0 since the possible jump AF(0) of F at zero has
been removed. The expectation

2

n 5 n .
E 717 z X —m— AZ(0) | = E‘% z / 9 47/ (N)
k=l k=1’ "
in2 .'_lk
1 - sin 2
=1 dF 48
= /_1 3 dF’'(\) (48)
S1 2
1 , ,
< F'(e) — F'(—¢) + c [F'(x) — F'(=m)].
n? sin? 5

Since F’ is continuous at zero this last expression can be made arbi-
trarily small with n sufficiently large. Therefore

n—e 1

lim z X, = AZ(0) + m (49)
k=1

in mean squarc. Notice that this indicates that the limiting time average

lim 1

n—ew N

z X is equal to the space average m = EX, if and only if
k=1

AZ(0) = 0.

c. The Linear Prediction Problem and
Autoregressive Schemes

Let us first consider the problem of predicting X by a linear form
in the observed variables X_;, . . . , X_,. The object is to obtain a

n
best linear predictor Xy = ¥ ¢;X_; in the sense that it attains the
i=1
minimal mean square error of prediction among all linear predictors
intermsof X, . .., X_,

E|Xo — X2* = min E|Xo — 3 aX_J )
aj j=1

It is natural to call this a one-step prediction problem since we want
to predict one step into the future. Predicting X; in terms of X_i,
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. . ., X, would be a two-step prediction problem. For convenience
assume that X_n, X_ny1, . . ., Xo are a finite segment of a weakly
stationary process { X} with mean zero and a spectral distribution func-
tion F(A) with an infinite number of points of increase. Fis said to have
a point of increase at u if for every € > 0, F(u + €) — F(u — €) > 0.
The best linear predictor will be given in terms of an appropriately
constructed set of orthogonal random variables. The procedure by
which the orthogonal random variables are to be constructed is usually
referred to as the Gramm-Schmidt orthogonalization procedure (see
Apostol {1]). Let

Eon = X u/{E[X_a2} )
Then E|¢_,|> = 1. Set
Nent1 = Xonp1 — E(Xonp1E-n)é-n (3)
and
Eni1 = Nnp1/ {Eln-nsa|2}* 4

We shall later see that £ .41 is well defined since we shall show that
E|n_pn41]2 > 0. Assuming this, notice that

Et k111 =0, E’E—n+l|2 =1 Q)
Suppose that £_,;; has been constructed as a linear formin X_,, . . .,
X_nti in such a way that
Ef 1k ppe = 8iwr 6)
i,i =0,1,...,7— 1. The random variable £_,,; is constructed as
follows. Let
j=1 -
Nnti = Xonyi — ‘Eo E(X_nyif—nti) b-nii- )
Now 7_n4; must have positive variance. For otherwise there would be
a linear relationship among X_,, . . . , X_ny;
b X 7t =0 8)
i=0

with the a;’s not all zero so that

EI i ailX_pyi
i=o

But this could not hold unless F had at most a finite number of points
of increase and we have assumed this is not the case. Thus E|p_,4;|2 > 0.
Set

f gt o
k=0

$onti = N-nsi/ {Elﬂ—n+i|2 } , (10)
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In this way we recursively construct orthonormal random variables
bt =0,1, ... ,n

Ef niifonyi = 8i; (11)

such that £_,4. is given by a linear form in X_,, . . . ; X_,4i. A possi-
ble predictor is a linear form in X_,, . . . , X_; and hence in terms of

Emy o ., 60
Xy = E ;X py; = 2 G _nyj. (12)

i=0

The mean square error of prediction with this predictor is given by
ElXo = X' = ElXo = '3 okl
= E|X,|> — 2 Re :'é; &EXoE-uyy) + E; log? (13)
= E|X,|? — té: |E(XoE-nti)|® + :Lé; laj — E(XoE-n4s)|™

It is clear that the mean square error of prediction is minimized by
setting a; = E(X,%_n4;) so that the best linear predictor is given by

Xt = 'f’ S E(XoFoni) bt (14)

=0
The error of prediction Xo — X§ is orthogonal to X_n, . . . , X_1 since
n -
Xo = T E(XoE_nyj)é—nts. In fact, a little reflection indicates that the
i=0

best linear predictor is characterized by this orthogonality property. For suppose

Xo — X§ is orthogonal to X_,, . .., X_; for some predictor X§.
Because of this orthogonality property it follows that
Xo — X§ = B& (15)
for some constant 8. We know that
n -
Xy = ‘20 E(XoE-—n15) E-nij- (16)
i=
Thus
n - -
X5 = ,20 E(XoE_n1)) E—nti — Béo. a7
Since X§¥ is a predictor it must be a linear form in X_,, . , X
or equivalently £_,, . . . , £1 and therefore 8 = E(Xo&) so that X

is the best linear predictor (see (14)).
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Let us now consider a weakly stationary process X, that satisfies
the system of difference equations

S aXoy = b (18)
k=0

where the £, are a sequence of orthogonal random variables
E£.%, = bpmo’ a2 > 0, (19)

with mean zero, E%, = 0, and ao % 0. The processes {X,} and {%,}
are both stationary and hence have random spectral representations

X, = [T emdz.)

- (20)
b= [T éndZy0).
Clearly
EdZ(\) dZ(p) = &\, g—:.ﬂ (21)

because of the orthogonality of the {£,} process. The difference equa-
tions (18) imply that

f _”x g (=) dZ,(\) = [ _"" ém dZy(\) (22)

where a(z) = T azb. On approximating the function which is 1 for
k=0

—7 <A< u and zero for g <A <7 by linear forms g,(\) in the

complete system of functions ¢”*, n = 0, +1, . . . , and using prop-
erty 2 of random integrals cited in section b, we obtain
[ e dz.0) = Zy(w). (23)

From this, it follows that
u ) o?
[ e ane) = 2+ (24)

2
where F:A) and F:(\) = —Za;r- (A + 7) are the spectral distribution

functions of the {X,} and {£.} processes respectively. If F,(\) has any
jumps a(e~™) must be zero there since the right-hand side of (24) is
continuous. Let F,4(A\) be the jump part of F(A) if any exists, that is,

Fra) = 2 AF() (25)
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where AF,();) is the jump of F, at A,. Call the continuous part of Fz(A),
F,(\)

F.(\) = F,(\) — F..(\). (26)
Then

/_" a2 dFLN) = G+ ). @7)

Since the right-hand side of (27) is absolutely continuous (with respect
to Lebesgue measure) the left-hand side must be. Thus F.(\) is differ-
entiable with

1 = BN 2 faempe (28)

Since the spectral density function f.(\) is integrable, a(¢e=?) can have
no zeros and jumps of F, cannot exist. Processes salisfying a system of
difference equations of the form (18) are called autoregressive schemes. We have
just shown that a weakly stationary solution of this system of equations exists
if and only if a(e=™) has no zeros. Further, if a solution exists, it is unique.
The spectral distribution function F,(N) of the scheme is absolutely continuous
with a spectral density given by

dF:(\ 2 .
70 = BB — 2 [l (29)
Notice that we have implicitly also shown that
* 1
- in\
Xa /_ ey 24, (30)

One of the main reasons for interest in autoregressive schemes
is due to the fact that the linear prediction problem is simple when
dealing with them. Suppose that the difference equations (18) have
been set up so that £, is orthogonal to Xp—1, Xp—2, . . . for all 2. From
the discussion at the beginning of this section

m

Xi= ) EXoy (31)
1]
k=1

is the best linear (one-step) predictor of X, in terms of X,—1, Xyo, . . . .
The prediction error is £,/a; with mean square error of prediction

o2/|ao|? (32)
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The best linear predictor (two-step) of X, in terms of X,—o, Xy—3, . .
is obtained by replacing X,—; by X* ; in (31).

Let us now determine the circumstances under which £, is orthog-
onal to X1, Xn—g, . . . . We have already seen that

”

X, = ™ < dZ (N 33
n . a( _,)\) 2( ) ( )

m -
where a(z) = ¥ axz*. Let the zeros of a(z) in the complex plane be

k=0

z1, 22, - - . , Zm Where the zeros are enumerated so that 21, . . . , 2p
are inside and 2,41, . . . , 2» are outside the unit circle |z] = 1. To

avoid a more elaborate notation we assume that all zeros are simple.
The following partial fraction expansion of 1/a(z)

m P @ m ®
1 4, _\‘'4, zY 4, Y
a(z)"Zz—z,”E?E(?) 2 ZE(Z) (34)
v=1 v=1 =0 v=p+1 i=0

is uniformly convergent for |z| = 1. The argument is completely
analogous for multiple roots except for a more complicated partial
fraction expansion. Introducing (34) into (33) the following represen-
tation of X, as a moving average of £,’s is obtained

Xn = E A E En+]+lz’ - z A E En—;z ]-l (35)

r=1 v=p+1 i=0
It is easily seen that &, wzll be orthogonal to Xp—1, Xn—2, . . . if and only
if all the zeros z, are outside the unit circle, that |z,| > 1 for all ». This
is a bit disconcerting because a(z) will generally have zeros inside and
outside the unit circle. However, we shall show that if {X,] is an
autoregressive scheme of order m (satisfies a system of difference
cquations of the form (18)), one can find a system of difference equations

kzo bxXnr = 1y bo # 0, (36)
with
Ey, =0, Enuiim = 8nmo?, a® >0, (37
that {X,} satisfies where 7, is orthogonal to X,_1, Xn—2, . . . for all n.
Since {X,} satisfies (18), it has the representation (33). Suppose that
a(z) has p zeros z1, . . . , z, inside the unit circle. Let

b(z) = 2 biz* = a(2) n (Zzz”_’z ) (38)

ve=1
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Notice that (z) has all its zeros outside the unit circle. The process
{X,} has the representation

X, = /-’ei 5o 4 (39)

Zy\) = / ﬂ (_W = 1) dZi(N). (40)

Z,(\) is a process with orthogonal increments such that

where

2
EdZ,\) dZ,{6) = bru 5 1)
since
N —z, |
e—i)\zv —1| 1. (42)

But this implies that
Y o = [T (e dZO)
k=0

= [T &N az0) = . (43)

with 9, orthogonal to Xp_1, Xn—g, . . . .

One can easily express the one-step prediction error o?/|bo|? in
terms of the spectral density of the autoregressive scheme. First notice
that

f_'” log |[e7™ — z|*d\ — 27 log |2|?
= /_: log (1 — ez 1)(1 — ¢*z71) dA

®

- [ { 2: ek f 121 Rz /kE N =0 (44)

if |2z] > 1. But then

L[ log f.(\) d\ — log f . log |b(e=™)|=* dX
2r | . i 2r |-
= =5 z / log |[e™ — 2,]2d\ — log [bm|?

v=1

m
= — 2 log [2,]2 — log |b.,|* = — log |be|> (45)

v=1
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where the z,’s are the zeros of & and hence all have absolute value
greater than one. The one-step prediction error is thus given by

o= 2o [ [ e rov o) (46)

This result is valid for all weakly stationary processes with absolutely
continuous spectral distribution function (see [27]). We shall, however,
prove this result only for such processes with spectral density positive
and continuous on [—m,r] and f(—m) = f(r).

The reciprocal of the spectral density of an autoregressive scheme
is a positive continuous trigonometric polynomial

m m
2 1 _invie ) .
) [b(e=M)]2 = z Ay cos kN + z By sin KA. (47)
k=0 k=1
We should like to show that every positive continuous trigonometric poly-
nomial has a representation as the absolute square of a one-sided trigonometric

m
polynomial | T bre~*M2% This is a special case of a result due to Fejér
k=0

and Riesz (see [27]). Let p(A) be such a trigonometric polynomial
) = 2 Apcos i\ + 2 Bysin kA (48)
k=0 k=1

with A, and either 4,, or B,, not zero. Replace cos A\ by (2* + 27%)/2
and sin AN by (z*# — 2z7%)/2i. The resulting expression has the form
z~™G(z) where G(z) is a polynomial in z of degree 2m with G(0) # 0.

Further G (12) = (G(z). But this means that there is a one-one cor-

respondence between the roots of G inside the unit circle and those
outside. If 2o is any root of G(z) with |z} < 1, then 5! is a root of G
outside the unit circle. Zero cannot be a root since G(0) = 0. Further
there can be no roots of absolute value one since the polynomial p(\)
is assumed to be positive. Thus G has the form

G =4[] = 2)— 7Y (49)

v=1

and hence
pO) = A (@ = 2)6 = &)
v=1

= B l_l lei)‘ - Z,I2 (50)

v=1
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where

B=4]] (=Y >o0. (51)

v=1

The desired representation is given above in (50). Notice that this
implies that any stationary process with spectral density the reciprocal
of a trigonometric polynomial is an autoregressive scheme.

Now consider a stationary process {X,} with absolutely continuous
spectral distribution function and spectral density f(A) continuous and
positive on [—mn] with f(—w) = f(z). The mean square error of
prediction in predicting X, by a linear form in Xp—3, . . . , Xp_n is

given by
m
2 c,X,...,

m
2 —zﬂ\

It is natural to call the limit of ¢2(f(\)) as m — «, the mean square
error of prediction of X, when predicting by linear forms in terms ot

o (f(N) =

i

"f) (52)

mm

the past, that is, X,—1, Xn-2, . . . . We shall show that
S (/) = lim o2(fOV)
= 21 exp {%r / " tog fOV) dxl. (53)

Given any € > 0, by the Weierstrass approximation theorem (see
Problem 10 of Chapter II) one can find positive trigonometric poly-
nomials p1( - ), p2( - ) such that

) — e <piN) S fN) S V) < fN) + ¢ (54)
for all A, But it is clear from (52) that
a*(f(N) < o*(e(N) (55)

if f(A\) < g(A) for all N. Further, a stationary process with spectral
density p;(\) has mean square error of prediction

27 exp {% / " log HiV) dx’ = ()i = 1,2, (56)
since it is an autoregressive scheme. This implies that

o*(p1(N) < *(fN) < o*(p2(N)) (57)
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with ¢2(p;(A)), ¢ = 1, 2, given by (56). This cannot be valid for every
€ > 0 unless (53) holds.

d. Spectral Estimates for Normal Processes

Let {X,} be a discrete parameter normal stationary process. If the
mean m = EX, of the process is not zero, we have already seen that

the time average
N
m¥* = - 2 Xj (1)
i=1

will be a reasonable estimate of m if there is no jump AZ(0) in the
random spectral resolution of X, at A = 0. For then m* will converge
to m in mean square as N — o by the mean square ergodic theorem
(see section b of this chapter). A detailed discussion of how such an
estimate compares with other linear estimates can be found in [25]
and [26].

However, in many cases one is also interested in obtaining infor-
mation about the spectrum of the process from a sample X,, n = 1,
. . ., N. Assume that the spectral distribution function of X, is abso-
lutely continuous with a positive continuous spectral density on [—m,r].
In this section whenever we speak of continuity on [—m,x], it is to be
understood that —r is identified with = and hence that f(r) = f(—).
In fact we are really dealing with the points on a circle rather than a
line segment. Keeping this in mind, if the points s with |s — 7| < &
are referred to, it is understood that one means the points s with
—r {s< —w+€and 7 — &€ < s <x Our object is to investigate
estimates of f(A). If the covariance sequence 7, = ExXmia is absolutely
summable, that is, Z[r,] < o, the spectral density f(A) is given by

=i

o0

O =5 z e, @

n=—00

One approach is to replace r, wherever possible by a good estimate
ra(N). A good estimate of r, is given by
N —|n}
1
(V) = N 2 X Xonginy (3

m=1
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if [n] < N. Obviously, if |n| > N, r, cannot be estimated from the
sample since there are no lags n that large available in the sample.
One might as well estimate them by zero. The resulting estimate is

N

BO) = Y e

n=—N
N

z /Y,' e~
j=1
commonly called the periodogram.
First consider the bias of Zy(A) as an estimate of f(\), that is,

bx() = EIv(\) — fON). ®)

2

E— _1. —
2rN

The bias indicates how well the estimate is centered. Now

N
1 Nk
EIN()\) = Em‘ Z Xje—“)‘
j=1
N
1 " y o\
Q;NE‘ /..,,. Z e“‘“‘” dZ([l,)

» sin? > (# -
= 5% [ ————— () d.

sm~ —a

(6)

The bias is therefore

by(\) = 5= s () = SNV dp. 0

2N =
2

1 /, sin? (n—k)

-

sin?

Notice that the weight function

®)
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is non-negative and it has integral one over [—m,r]. Further, given
any € > 0

1 sin? g A
im / P A A ©)
IN<e sin” 5

Thus, all the mass of the weight function accumulates in the immediate
neighborhood of A = 0 as N — . This implies that Iy()) is asymptoti-
cally unbiased since by(A\) — 0 as N — . If the spectral density is
assumed to be sufficiently smooth, one can get convenient bounds
on the rate at which by(A\) — 0. For example, suppose that f(A) is
continuously differentiable. Now f(u) — f(A) is given by

f) = Q) = /(A + 6w = N)u—N) (10)

o] <1,for | — A <4< ’2—’ The following bound is simply obtained
by using formula (10)

le(A)I<maX|f'{ / + / }w A du

sin? L4(u — N) lu =

l:s

lu— )\|<-— FSle—N<a
N
2 —A)
1 sin 2 (u log N
= <
+ 27rN' )[DA sin? }é(# _ )\) If(l‘) f()\)l dp £ K —57— (“)
n—N >

where K is a constant. Thus by(\) approaches zero with order of

magnitude long as N — . The bias of the periodogram is quite

small. But, as we shall see, the variance of the periodogram is unfor-
tunately large. Nonetheless a detailed estimate of the variance will be
made since it will be useful in considering more reasonable estimates
of the spectral density. We assume the spectral density f(A) to be con-
tinuously differentiable as we did in the estimate of the bias carried
out above. The procedure we use is in part a modification of an argu-
ment carried out by P. Scheinok in his thesis [72]. Now

N
4n2N2 cov (In(\),In(k)) = X edemimdgivag—iva cov (%, %, %%0)  (12)
vi=1

where
cov (xlenyxv;xu) = Vyjmpgd v2—vy + Ty iy vy—vs (13)
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(see Problem 10 of Chapter IV). Using the spectral representation of
the covariances, we note that

47%N? cov (IN(X),IN([J.))
x N
= f f Z { £ OvHa)ginsima)g=in OB)g=irs ()
-7 vi=1

+ einOtgmineta)—inO—Bgirnu—P) f(a)f(8) da dB  (14)

=[[m0+mm@—wmva+mm&m—mMWMMﬁ

+[/mo+wmvm—@mvm+mmu—mmmmmw

(15)
where
N
e'LNX 1
Dy(\) = Ze”" e (16)
v=1

If f is set equal to the constant function one, the first integral and
second integral of (15) are seen to be

sin? 5 0 + u)

el an
2
and
sm2 3 A=)
2
(2m) = (18)
2

respectively. This suggests estimating (15) by

sin? % N+ sin’ N > (A — )

(27)? +
sin? (A -; ) n? 0\ Ul ) ©)

FOOf(w)- (19)
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The difference between (15) and (19) is given by

[ [ Dy(A + &)Dy(i — @)Dy(—X\ + B)Dx(—u — B[ /()f(B)
’ ,, — QW] dad (0
+ [/ Dy(\ + a)Dy(—p — a@)Dy(—\ + B)Dn(p — B)[f(a)f(B)
’ — FON/(W)] da dB.

We shall only carry out the estimation for the second term of (20)
since the estimation for the first term is completely analogous and
leads to the same bound. By the Schwarz incquality

vl [ / Dy(h + &)Dy(—u — @)Dy(—) + B)Dx(u — AU(@/E)

— FNfW)) da dB |
y 1)
< [ / f IDy(A+0) Dy(u—B)I2 f(@)f(8) — fNf(w)| der dB

/ [ 10u—u=ap(=2 48 1@1®) - 100 da |

-7

It will be enough to look at

ooy | DO+ D3 ~ B@Y®) 0050 da . (22

Divide the integral over —7 < «, 8 < 7 into integrals over the two
subdomains R;, R, where

R,
R,

{aBl N+ a| > dor|u— 8 2 4
{aB| N+ ol < Aand |u — 8] < 4].

(23)

The integral over R; is bounded by K;/N where K; is some constant.
By the mean value theorem

f@fB) = fNf(w) = F@fB)a+N) + fB)f@B —w (24
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where (&,8) is a point on the line joining (e,8) to (—\,u). The integral
over R; is seen to be bounded by K, log N/N by using this expansion
and an estimation procedure like that leading to (11). Thus the covari-
ance of In(\) and In(w) is given by

LN LN
sin 5 A =p sin 2 A+ w) Iy f(#)

_I.
sin? O‘_E_i) sin? QLZUQ N (2s)

log N
+ 0 (—‘N_)

under the assumption of continuous differentiability of the spectral density.
Notice that the limiting variance

cov (In(\),In(p)) =

7 A0,

. . _
]{'l-inw o*(Ux (M) 272(N) otherwise.

(26)
This implies that the periodogram Iy(\) doesn’t even converge to f(\)
in mean square as N — o if f(A) 5 0, a dubious feature for a proposed
estimate of the spectral density. However, Iy(A) and Iy(p) are asymp-
totically uncorrelated if N % p and f(A) and f(u) are positive. This
suggests that we might get a reasonable estimate of f(A) by averaging
In(u) in the neighborhood of N. Let wn (k) be a sequence of positive weight
Sunctions on [—m,m] with the following properties:

(a) / _: wy(u) du =1 (27)
(b) wy(u) — O uniformly in p for |u] > ¢ (28)

as N — o for every fixed € > 0

[ wx @y + ) &
(c) max z -1|—-0 (29)

wed| [T wkO) dx

as N—> o foran 4 > 0.
Notice that (a) and (b) imply that more and more of the mass of the
weight functions accumulate in the immediate vicinity of A = 0 as

N — o« and hence that / _: w2 (a) da — © as N — . The proposed

sequence of estimates is

) = [T ey = wIn(w) du (30)
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Our object is to investigate the bias and variance of this sequence of
estimates as N — . From (6) it is clear that the bias by()) is given by

by(N) = Efs(\) — f(A)

- . q SO (u— @)
- /_,w”(" —W | N T a—a V@~ fN)]dadu

sin® &
= /_’ _wev( = wlfw) — fN))de + O (log N) o

under the assumption of continuous differentiability of the spectral
density. Conditions (a), (b) on the sequence of weight functions imply
that by(A\) >0 as N — « so that the estimates are asymptotically
unbiased.

Consider now the variance ¢%(fx¥(\)) of the estimate fy(A). Formula
(25) implies that the variance is given by

a*(fn(\) = / / wx(N — e)wn(A — B) cov (In(),In(B)) da dB

sin? 5 (a )]
f / wox(h — a)wx(\ — 6) —~—(——Tf(a)f(ﬁ) dec dB

sin? ~———~

/:/ P sm2 (a+8)
wy(N — a)wxy(N — fla)f(B) da dB
! NCER) ( x B)

+0 (195 N). (32)

Assumption (c) essentially states that wy(u) accumulates mass in the
neighborhood of u = 0 at a slower rate than the Fejér kernel. This
suggests that one ought to approximate the two integrals of (32) by

T w0 - @ da (33)

and

2r [~ ,
N /__" wy(N — )wn(N + a)f* ) da (34)
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respectively. It will only be necessary to carry out the approximation
for the first integral in detail since the approximation is quite analogous
for the second integral. Let us split

sin® (a —B)
f / n(\ = @)y (h ~ ) —— g [ dads (3)

sin? ~—— (a

into two integrals 7; and Is, the first over the region |a — 8| < %and

the second over |a — 8] > 4 We have

N
1 sin —z—u -
I, = ¥ [ ” / wy(N — )wy(N — a + w)f(a)f(e — w) dadu
4 sin2; Y77
lul<wF 2
. o Nu
1 sin ? r 1 £
= 3 / . / wi (N — @)f*(a) dadu+ o (X’[ wk (@) da)
A sin? - o o
|u|_<_N 2
=2 [T w30 = @) da+ o = [ wile) da) (36)
N J..oH NJF
Similarly
. o Nu
1 Sin -—2'— r's
n- 2 7 = s = e @t = ) dev
PR
l“l>% sin 2
2
<K / / w3, (a) de du
m2
|u|>

<& /_”w;«’v(a) dot = o(%, /_: 203, (ct) a’a) G7)

since 4 can be made arbitrarily large. Thus

(fo ) 257 [7 wh O = @)f(a) da

+ gz%r T v = Qux(h + Of(e) da (38)
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as N — . If wy(N) is symmetric about A = 0 as it is in most applica-
tions, a further approximation leads us to

%’frfz()\) /T w (@) da ifA %0, +n

a*(fv(N) = (39)
N f 2(\) / w}(a) da otherwise.
A few simple weight functions are given by
sin? Iﬂ' A
wn(\) = 5 — 2 (40)
2rhy . LA
sin? =
and
L <
wn(\) = { 2hn = (41)
0 otherwise

where Ay diverges at a rate slower than N as N — «.

Various approximations have been proposed for the probability
distribution of such spectral estimates. The most commonly suggested
is that with density function g(x) where

a
o) = {I-‘—O\_) xMlg~ez for x > 0

0 otherwise.

(42)

Here a, A are determined by fitting the first two moments. This approxi-
mation is quite reasonable for moderate sample size. A Gaussian dis-
tribution can be used when the sample size is large. A detailed discus-
sion of approximations for small sample size can be found in [20]
and [28].

The discussion of corresponding estimates in the continuous
parameter case is similar. Extensive discussions of spectral analysis
can be found in [6], [26], and [71].

In many cases the discrete parameter time series is obtained by
discretely sampling a continuous parameter time series (see the dis-
cussion in section a of this chapter). The following conditions on the
spectrum of the continuous parameter process are enough to ensure
that the spectrum of the derived discrete parameter process satisfy the
conditions assumed in this section. Let the spectrum of the continuous
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time parameter process be absolutely continuous with a continuously
differentiable spectral density f(A). Further, let

) = O(A[7779) (43)

as |A| — o« where € is some positive number. The derivative of the
spectral density of the derived discrete paramecter process is then
continuous and is given by

0

> (%) 44

j=—eo

where A is the sampling interval.

e. Problems

1. Let ¥ be a random variable with distribution function F(y). Let
X, =exp (nY), n=0, +1,.... Compute the moments
EX,X,.

2. Let X, n =0, +1, £2, . . ., EX, = 0, be a weakly stationary
process so that 7, = EX;Xyin has the representation 7, = f _: e
dF(\) where F is a bounded nondecreasing function. Show that
X, has the representation X, = [ ; e™ dZ(\) where Z(\) is a
process of orthogonal increments with E dZ(\) dZ(un) = 8\, dF(N).

3. Let Xy, te[0,2r], EX; = 0 be weakly stationary on the unit circle.
This means that ¢ = 0 is identified with # = 27 and

EX; X, =1, u =t — smod 2m.
Show that

o
Ty = z aneztn

n=—oc0

where the numbers a, are the Fourier coefficients of r, and that

Xt = % Zneim

n=—c

with EZ,Z = 8pman.
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4.

A weakly stationary process X;, — o < ¢ < «, EX, = 0, has the
representation

X, = [ T endz(N)

where Z()) is a process with orthogonal increments. Show that a
real-valued weakly stationary process has the representation

X, = [o ® cos N dZi(\) + ﬁ) * sin I\ dZx(0)
where

EdZ;(\) dZ(p) = 852 dF(N), j, k = 1, 2.
Further dZ;(\) = 2 Re dZ(\),  dZs(\) = —2 Im dZ(\).

Let X;, — o <t < o, EX; = 0, be a weakly stationary process.
Assume that the spectrum of the process is band-limited to
[—mw,mw] so that X; has the representation

X, = [ e dZ(\).
Show that

©

X¢= 2 Xn/w

n=—®

sin w(wt — n)
w(wt — n)

. LetX,,t =0, 1, . . ., EX, = 0, be astrictly stationary Markov

chain with a finite number of states and transition probability
matrix M. Assume that M has only simple eigenvalues. Find the
spectral distribution function of X; in terms of the eigenvalues of M.

Let X,, n=0, £1, £2, . .. be a normal process satisfying
equations of the form

m m
2 aXnkt = 2 brfnr with ag, be # 0,
k=0 k=0

where the £, are independent normal random variables with mean
zero and variance one. Under what conditions will there be a sta-
tionary solution X,? Can you express the X, process directly in
terms of the £, process? What is the spectrum of a stationary solu-
tion if it exists?

. Let X, = (XP,X?), EX, =0, n=0, +1, ... be a weakly

stationary two-vector-valued process, that is, r,. = EX/X,,
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10.

11.

Random Processes

depends only on the time difference n — m. Show that then
Ta_m = T'n.n has the representation r,_, = [ T gitn—mn dF(\) where
-x

F(A\) is a 2 X 2 matrix-valued Hermitian function that is bounded
(every element a bounded function) and nondecreasing in that
AF(\) = F(A\1) — F()\;) is a positive definite matrix for every pair
)\1, )\2 with )\1 > )\2.

. Let X, be a two-vector-valued weakly stationary process as in the

last example. Assume that the components are real-valued. It
then follows that dF(A) = dF(—X\). Show that X, has the real
representation

X0 = /o’cos nAdZO) + [0 " sin nAdZO(N)
XO = jo " cos nAdZP(\) + [0 " sin nAdZP ()

where the Z@®(\) are real-valued processes with orthogonal
increments such that

EdZOQ) dZ0 () = EdZOO) dZP() = 28: ;50 dFs j(\)
EdZO0) dZ®(u) = 26y, Re dF1s(\) 4, = 1, 2
EdZPO) dZP() = —E dZPN) dZ@(w) = 26y, Im dFy ().

If the process has a spectral density function, that is, FQA\) =
/ -x f(1) dp, the real and imaginary parts of the cross-spectral

density Refi2(N), Imf12(\) are sometimes referred to as the cospec-
trum and quadrature spectrum of X and X(.

Consider the results of the two previous examples in the case of a
normal stationary two-vector-valued process X, satisfying the

matrix equation
X, =AX, 1+ &

where &, is a two-vector-valued process with components two inde-
pendent normal white noise processes and A a 2 X 2 matrix with
real elements such that AA’ < L.

Consider what parallels of the results of this chapter you can
obtain in the case of a two-parameter process Xi., EX;.= 0,
weakly stationary in that EX,,X;i.-4s depends only on the
differences «, 3.
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Notes

1. For a more extensive discussion of weakly stationary processes one should
refer to the books of Grenander and Rosenblatt [26] and Doob [12]. A general
method of obtaining the harmonic representation of a stationary process and many
allied results by Hilbert space methods is given in Karhunen’s paper [38] on linear
methods in probability theory. The book of Tu. Rosanov [A13] on stationary pro-
cesses develops many of the basic results in this area.

n

2. The result on time averages ;z Z Xy of a weakly stationary process is essen-
k=1
tially the von Neumann ergodic theorem (see [35]).

3. The linear prediction problem is considered in section c only for weakly
stationary processes with a continuous spectral density with f(—m) = f() bounded
away from zero. A discussion of the general result and related material can be found
in the excellent book of Grenander and Szegd [27] on Toeplitz forms. Recently
there has been a good deal of work on the prediction problem for vector-valued
weakly stationary time scries (see [33], [56]). The initial work on prediction prob-
lems is due to Kolmogorov [46] and Wiener [77]. The analytic problem that
basically enters into the prediction problem for discrete time paramecter weakly
stationary processes was treated by G. Szegé [75].

4. An extensive discussion of spectral analysis of stationary time series can be
found in Grenander and Rosenblatt [26]. The derivation of the asymptotic prop-
erties of spectral estimates given in section d is special since it is carried out only
for normal processes and under rather strong regularity restrictions on the spectral
density of the process. However, it was felt that there are advantages to this since
the derivation is elementary and is carried out completely in the spectral domain
rather than in terms of the covariances of the process. Further, some of the inter-
mediate estimates made such as (d. 32) give greater insight into the discontinuity
in the limit formula at 0 and . For a derivation under more general conditions
see Parzen’s paper [59]. A discussion of spectral analysis for vector-valued stationary
time series can be found in [24] and {71]. The books of T. W. Anderson [A1] and E. J.
Hannan [A7] which have recently appeared are also very useful references.
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MARTINGALES

a. Definition and Illustrations

We consider a family of processes called martingales. Though a
number of other illustrative examples will be given, the most immediate
interpretation is that of a fair game. The discrete parameter case is con-
sidered for simplicity. The parameter n is assumed to run over all the
integers, the positive integers or the negative integers. Let X, be a
sequence of random variables with $, a corresponding nondecreasing
sequence of Borel subfields of &. The random variable X, is assumed to
be measurable with respect to $,. In fact, $, is often taken to be the
Borel field generated by X;, £ < n, though this is not necessarily the
case in our discussion. Also let E[|X,|] < oo for each n. The sequence {X,}
is called a martingale with respect to the Borel fields {5,} if

Xm = E[XnI‘(Bm]: m < n, (1)

almost surely. Think of a sequence of gambles at the times n. $,, can be
thought of as corresponding to the information available to the player at
time n. X, is the cumulative gain (or loss) of the player up to and
including time n. Condition (1) then states that the sequence of plays
is “fair” in the sense that the conditional net gain from time m to n given
information up to and including time m is zero. If the condition (1) is
replaced by

X, = E[X,|$,], m<n, )

almost surely, the sequence {X,} is called a supermartingale relative to {3,}.
Notice thatif ¥,,n = 1,2, . . . ,is a sequence of independent random
variables with means equal to zero and $, = (¥,,j < n), the partial
sums X, = i Y, are a martingale relative to {$,}. If the means of the
i=1

random variables Y, are all nonpositive, the sequence (X,) is a super-
martingale relative to ($,).

In Section ¢ of Chapter V another example of a martingale had
already been implicitly considered. Let f be a bounded measurable

182



Martingales 183

function on a probability space with Borel field of events $. The in-
creasing family of subsigma-fields C, of $ is assumed given with C the
sub-sigma-field of $ that (C, generates. Set

X, = E[f(w) len] (3)
Then (X,) is a martingale relative to (C,) since

Xy = E[f(w) |em]
= E[E[f(w)|C,]|Cp] = E[X,|Cy] 4)

form < n. In Section c of Chapter V we showed that X, = E[f(w)|C,]
converges almost everywhere to

X. = E[f()[c], ®)

as n — co. This is an example of a martingale convergence theorem. A
general result of this type will be derived in Section b. The following
is a related example of a martingale. Consider a probability space with
Borel field $ and probability measure P on $. For each n let CP,
C%P, . .. be a countable collection of disjoint measurable sets with
union the whole space Q. Denote the Borel field generated by C% (n
fixed) by C,. Further assume each C*}? is a subset of some C®. Let v
be another measure on $. Then if

v(C)
P(C)

it can be easily verified that X,, = E[X,|C,], m < n, so that (X,) isa
martingale relative to (C,). A particular case of interest is that in which
Q = [0,1], $B is the Borel field of Borel sets and C, is the finite field
generated by the binary subintervals {x|j/2" <=x < (5 + 1)/2"},
7 =0,1,. . .,2% 1 Think of P as the uniform measure on [0,1] and v
as any other probability measure on the Borel sets. The function X,,(w)
is then the quotient of v relative to the binary intervals of length 1/27,

Consider a discrete time parameter Markov process with stationary
transition mechanism. Let the j step transition function be P(j,x,4)
with x, 4 a point and a measurable subset of the state space. Still an-
other illustration will be furnished in this context. Let N be the first
hitting time of the measurable subset C (of the state space) for the Markov
process (Y,,n = 0,1, . . .), that is

{w|No(w) =k} = {0|Y,(w)¢C,j =0, . . .,k —1, Yk(w)GCI} )
k=0,1,2,...
{w|Ne(w) = 0} = {w|¥,(w)¢C,j = 0,1,2, . . .} ™

X, (w) = for weC{™, (6)
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Formally, N, is an “improper’ random variable in that we’re possibly
allowing it to take on the value co with positive probability. However,
it is easily seen that this will cause no difficulties in the following dis-
cussion. The random variable N; is an example of what is called a
stopping time relative to the increasing family of Borel fields B, = B(Y;,j < n),
that is

{w|Ne(w) = n}eS,. (8)

In the case of N this also holds for n = oo with B, = B(Y,,j =0,
1, . . .). Generally, a stopping time can be defined with respect to any
increasing family of Borel fields. Let

hy) = P[Nc(w) < o|Yo(w) =], &)

that is, 2(») is the conditional probability of ever hitting C given that
one starts from y initially. Set X, (w) = A(Y,(w)). Our claim is that

(X,,n =0,1,. . .) is a supermartingale relative to the Borel fields
B, = B(Y,,j < n). This follows since
E[X,(w)|B,] = E[X,(w)|Y,] (10)

by the Markov character of (Y,) and
E[Xn!Ym] = E[h(yn(w))lym]
= fP(n —m, Ym dz)h(z)
= P[Y;C for somej > n|Y,]
< P[Y,eC for some j = m|Y,]
=Y, =X, n=mnm (11)

Notice that if {X,} is a martingale relative to the sequence of Borel
fields &, the corresponding sequence of martingale differences {Z,}
with Z, = X, — X, _; satisfy

E(Z,|B,) =0, m<n, (12)
since
E(Zni\%m) = E(Xn - Xn—ll‘%m) = Xm - Xm = 0, (13)

if m < n. A sequence of martingale differences arises naturally in the
context of a prediction problem. Let (Y, n = ..., —1,0,1,...)
be a strictly stationary process with finite second moment, EY? < co.
Consider the best (possibly nonlinear) predictor Y7 of ¥, depending on
Y;, 7 <n — 1, in terms of minimizing the mean square error of pre-
diction
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E|Y, — Y32 (14)

Let B, = B(Y;,7 < n) be the Borel field generated by Y, j < n. Then
Y¥isa $,_, measurable random variable. One can show that

Y3 =E(Y,]|B,-1) (15)

by the argument used to obtain the result in Problem 11 of Chapter IV.
The prediction error is

Z, =Y, - Y* (16)

The process (Z,) is a martingale difference relative to the sequence of
Borel fields ($,) since

E(Zn|$m) = E(Yn - Y:I‘(B’m)
= E(Ynl‘%m) - E(E(Ynl‘%n—l)l‘%m)
— E(Y,|B,) — E(V,|B) =0, (17)

ifm < n.

There are two fairly obvious but interesting remarks one can make
about supermartingales. First notice that if {X,} and {Y,} are super-
martingales relative to the sequence of Borel fields {3,} then aX,, + 5Y,
is a supermartingale relative to {3,} for a,b > 0. The second is that
{min(X,,Y,)} is then a supermartingale relative to {$,} since if X,, <
Y, m<a,

min(Xm)Ym) =Xy = E[angsm]
> E[min(X,,Y,|Bn]. (18)

(X,) is called a submartingale if (—X,,) is a supermartingale. Clearly
(X,) is a martingale if and only if it is both a super and submartingale.

b. Optional Sampling and a Martingale
Convergence Theorem

Let T be a stopping time relative to the increasing sequence of
Borel fields $,. Then T is called a bounded stopping time if there is a
finite number N such that |T| < N with probability one. Given a
stopping time 7 and a process X = (X,,) on a probability space, we
mean by the process X stopped at T (denoted by X7T)

th' = A minn,7)- (1)
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Also given a measurable set or event 4, let I, denote the indicator
function of 4, that is,

1 if wed
Tu(w) = {0 if w0 ¢A. @)

We first show that if X = (X)) is a martingale (supermartingale) rela-
tive to the increasing sequence of Borel fields $B,,n = 0,1, . . . ,and T isa
stopping time, that then the stopped process X7 is a martingale(supermartingale).
Notice that

n—1
X1 = ,Z:: Xdir-p + Xodiram- @

This implies that
E[Xz+1 - Xﬂ\%n] = E[I(Tzn+1)(Xn+1 - Xn)l$n]
=IronnE[(Xns1— n)l35n] 0. 4
The integrability of X7 follows from
X5 < [Xo] + - - - + [ Xl (5)

The proof is essentially complete.

The result just derived on a stopped martingale suggests the follow-
ing theorem on optional sampling. Before stating the theorem a little
additional notation is introduced. If T is a stopping time, the Borel
field B, consists of all events 4 such that

ANAT < n}eB,. (6)
Also given the event 4, let the stopping time 7T, be such that

T(w) ifwed

Ta®) =14e  ifuyd. )

Theorem (optional sampling): Let X be a supermartingale (martingale)
relative to the increasing family of Borel fields $,,n = 0,1, . . . , with S and
T two bounded stopping times such that S < T. The random variables Xs and
Xy are then integrable with

Xs'> E[X|Bs] (8)

with probability one.
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Assume that k£ is a large enough integer such that £ > T with
probability one. Introduce the process ¥ == (¥,)

Yn = Xmm(:r,n) T Amin(S,n)* (9)

The details of the proof will be given for the case in which X is a super-
martingale since the result for X a martingale follows easily from that.
The process Y will be shown to be a supermartingale. Notice that
Y, =0and ¥, = X; — X;. One can write

n
Yn= j;Xj-l(I(s<j-1=T) - I(S=!°1<T)) + an(s<nsT)‘ (10)
This implies that

E[Yn+1 - Ynl$n] = E[I{S<n+lsT)(Xn+1 _Xn)"%n]
=I(S<n+1sT)E[Xn+1 "Xn|$n] SO) (11)

so that ¥ is a supermartingale. Since Y is a supermartingale we must
have 0 > E(Y,) = E(X; — X5). To obtain (8) consider any event
AePBs and replace § and T in the inequality just obtained by §" =
min(§,,k) and T = min(7T,,k) respectively. The inequality

0> E(Xy — Xg) = f (Xp — X,) dP (12)
A
follows. The definition of conditional expectation and inequality (12)
imply (8).
As an immediate corollary the following result on the retention of
the martingale property is obtained.

Corollary: Let X = (X,) be a martingale relative to the sequence of
Borel fields B,. Assume that Ty < Ty < - - - are a sequence of bounded
stopping times. Then the derived optionally sampled process (Xy,) is a martingale.

There is an immediate interpretation of this corollary. Suppose that
X = (X,) represents the results in a sequence of fair games. If the
gambler chooses not to play every time but only at the stopping times
T, < T, < - - - (so that he has no knowledge of the future), he is still
playing a sequence of fair games.

We now state and derive an integral inequality for supermartin-
gales. Let X = (X,) be a supermartingale relative to the Borel fields B,
n=0,1,.. ., and the event AeS,. Then if ¢ > 0,

PAN{ inf X, < —) < | X, (1

An{ inf Xp< =c¢}
osksm
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for j = m. First set

Yalw) = {X,,(w()) g Z:j. (14)
The sequence Y = (Y,,) is a supermartingale since
E(Yyyy — Yol By) = E(L4(Xy i1 — X,)[Bn)
= LE(X,\y — X,|B,) <0. (15)
Let
T(w) = inf{n|n < m, ¥,(w) < —c}. (16)

If no such integer n exists set 7 (w) = m. The random variable T is a
stopping time bounded by m so that the theorem on optional sampling
can be applied. Thus E[Y,;] > E[Y,] and so

E[Y,] < E[Y;] < —cP[AN{inf X, < —7}]
X, (17)

f(An( inf Xp > — ¢}
nsm

or

P[4 N {inf X, < —g] <[ X,. (18)

A0 (nlglm Xp < — ¢}
The inequality just derived can be used to prove a martingale con-
vergence theorem.
Theorem: Let X = (X,) be a martingale relative to the family of Borel
fields By m = 0,1, . . ., with E|X;] < M < oo for all j. Then
lim X, =X (19)

i
exists with probability one where E|X| < M.

The proof is indirect. Assume there is no convergence with prob-
ability one. Then there are numbers ¢ < b such that the set

D = {lim X, > b, lim X, < 4} (20)
k=« k= o
has P(D) > 0. Let
Bunn ={ sup X > b}
msksn
Ay ={ inf X, <a}. (21)
msk<n
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We can then find a sequence of integers n, < ny, < - - - such that

P(D N Ay,,) =P(D)(1 — 47

P(D N Ainy N\ Bryny) = PD)(1 —4-1 —4-%)
P(D ﬂ Aln; m Bn1n2 m Anzns) = P(D)(l — 41 __4-2 4—3)
o (22)

Let Dy = A,,,, Dy = Ay, () Bayngy - - - - Since X is a martingale, X
and —X are supermartingales. The inequality (18) implies that

[, X =eP(Dy), (23)
Dy
or
f Xj <aP (Dk)’
Dg
according as k is even or odd, for j > n;. This implies that

Joop, = (6 —@P(Dys) > %0 —a)P(D),  (24)
ifj > ng 4, (k even). Then
E|X)| = %r(b — a)P (D) (25)

with 7 any given positive integer if j is sufficiently large. But this contra-
dicts the boundedness of £|X;| uniformly in j.

We shall say that a martingale X = (X,) with respect to $,,
n=1,2,. .., is closed if there is a random variable ¥, E|Y| < oo,
such that

X, = E[Y|%,] (26)

with probability one. The following result indicates when a martingale
is closed.

Corollary: A martingale X = (X,,) is closed if and only if it is uniformly

integrable.
Assume X = (X,) is closed by Y. Then
lﬁlxn»c; K= qu,,»c) YI Sf(lx,.»c) 71, 27)
and

Px| > g <1mx) <lmpy, (28)
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so that the first integral on the left of (27) is less than ¢ for ¢ sufficiently
large. Thus X is uniformly integrable. Conversely, assume that (X,) is
uniformly integrable. Then E|X,| < M < o for some constant M.
The martingale convergence theorem implies that there is a random
variable ¥ = lim X, with E|Y| < . The uniform integrability
implies that """

E|X, —Y|—0, (29)
as n — o0. Since
L] 7= m ®

for AePg, s < m, Y closes X.

As an application of these results, consider the illustration of section
a in which one had a probability space with Borel field $, measures v
and P on $ and the increasing family of subfields C,. The sequence
X,(w) as given by (a.6) is a martingale with £X,(w) = E|X,(w)| <
v(Q) < co. The martingale convergence theorem of this section implies
that

lim X,(w) = X.(w) (31)

exists almost surely with EX,(w) <v(Q). If v is absolutely con-
tinuous with respect to P so that

v(B) = [ f(w)aP (32)
the martingale is closed since

Xy = E[f(w)|C,]- (33)
The corollary then implies that

E|X, — X,| =0, (34)
as n — co. Further, if $ = 521 C, (% is the smallest Borel field contain-

«©
ing le C;), we must have

S (@) = Xo(w) (35)

almost surely.
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c. A Central Limit Theorem for Martingale
Differences

The principal result of this section is concerned with a stationary
sequence of martingale differences X = (X,) relative to a sequence of
Borel fields B,,n = ..., —1,0,1,. . ., thatis,

E(X,|B,) =0, m<n (1)

Theorem: Let X = (X,,) be a stationary ergodic sequence of martingale
differences with finite second moment EX2 = 1. Then

1 n
— ) X (2)
Vn ;

is asymptotically normally distributed with mean zero and variance one as
n — co.

Results of this type are initially due to P. Lévy. The particular result
stated is due to Billingsley. The format of the proof we give is modeled
on one of Brown and Eagleson [A2]. The following lemma is helpful in
the proof.

Lemma: Let X,, w,,n = 1,2, . . ., be random variables with ¢(t) a
characteristic function. Assume for some fixed t that w=} converges to $(¢) =1 in
mean of order one and that

lim E(w3!-exp(itX,) — 1) = 0. (3)
n-+ o

Then
lim E exp(itX,) = $(t). 4

The lemma follows since

|E (exp (itX,) — (t))| < |E exp (itX,) (1 — wy'(2))]
+ |E(t) (wy * exp (itX,) — 1)
< E — w;'(0)]
+ |$(2)] |E (wy * exp (itX,) — 1)]
< Elwg* — ¢(t) 7Y
+ |E(wy? exp (itX,) — 1)]
—0 asn—> 0. (5)



192 Random Processes

We now go on to prove the theorem. Let

1 n
== Y X, (6)
j=1
1
aﬁk =;E(X}%I“Bk—1)

K

2 2 _ 2

2k = 2, Ohj b, = max o3,
i=1 lsjsn

Because of the ergodicity of the process X = (X)) and EX2 =1, it
follows that V2, — EX? = 1 with probability one as n — co. Thus

lim P(V2Z, <2) = 1. (7
n—+co

It is clear that
E(Xgl(lxu >evm) —> 0, (8)

as n—> o0 where ¢ is any fixed positive number. But this implies
that

n

1
P z E(ijl(lleszn)l“BJ'—l) -0 (9

i=1

in probability as n — oo since (7) is the expected value of the non-
negative random variable (8). Notice that (9) implies that

by >0 (10)

in probability as n — oo since

1
b, <& 4 p mjax E(X?Iqx,l 2evm|Bj-1)

n
1
et ) EXHuseimi o (11)
i=1
Let
X = Xdytoeoy k=12, ... (12)
Then X%, . .., X%, is a martingale difference sequence relative to

By, o .., By since L2, <g) is By -, measurable. If we set
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k

Vi =g ) BB
i=1
then
1 n
Vi =g ) TtsaE X8, <2 (13)
i=1
with probability one. Now
lim P [r"\ X%, — X,)] (14)
n-w Li=1

since (X%; # X)) = (V2, > 2) and (VE > 2) C (VZ, > 2) so that
P[ U (X; # X%)] C P(V2, > 2). Thus, it is enough to carry out the

proof with X% s instead of X,’s. However, the proof follows just as if we
took the X,’s and assumed V2, < 2 with probability one and this is the
way we shall continue. Let g,(x) = (¢** — 1 — itx)x~2. Since

| (x)x?] < % 12x2, (15)
formula (9) implies that if X, = 1 X,
Vv

n tZ
kZ E(gz(Xnk)Xnkw\”k 1) = )

in probability as n — c0. Because of the boundedness of V2,
t2
exp (3 BaXuX2dBen)) ~op (= 5) (16
in mean of order one as n — oo. Let
. n n
Py = exp [itS, — 3 B X2lBe-0)] — 1= T 6m (1)
where
k-1 k
G = xp [it'S Xy — 3 E(a(X,)X31B,-)]

X {exp (itXy) — exp (E(g(Xnx) X 2| Brc-1))}  (18)
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Then

E (G| Br-1) = —{QE (8(Xonie) X 7e| Bre - 1))}
exp [it'S Xy — 3 Bla(X)X3i8,0],  (19)
with Q(x) =¢* — 1 — x. Now

Qx) < Yalx]® 1. (20)
This implies that

|E(Gul Bi—1)| < Vatoty exp (212). (21)
Thus

n
|EF,| < E kZI [E (G| B 1)
n
< Vit exp (2t2)E 3 oy
=1

< Yyttexp (2t2)E(b,VZ,) >0 (22)

as n — co. Now use the lemma with X, = S, ¢(¢) = exp (—¢2/2) and

n
w, = exp ( 3 B(a(Xu) X2lB-)), (23)
and we find that
lim E exp (itS,) = ¢~*2 (24)

for every ¢ The desired result follows by using the continuity theorem
for characteristic functions.

In the following corollary we have a central limit theorem for a
broader class of stationary processes. The basic idea is that of intro-
ducing an appropriately defined martingale and applying the foregoing
theorem. This technique was first used by Gordin [A6].

Corollary: Let Y = (Y,)), n=- .., —1,0,1,. . . be a strictly
stationary process with EY; =0, EY} < o0. If B, = (Y}, k < n) is the
Borel field generated by Y, k < n, assume that

3 EET ISP < o, (25)
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and
EVZ +2 3 E(Y,Y,) =a® > 0. (26)
k=1
Then
— v (27)
Vieisi’

is asymptotically normal with mean zero and variance one.

Let S, = 3 ¥, Then
=1

ES3 =nEY3 +2 3, (1 — HE(Y.Y,). (28)
Now
|E(Y,Y,)| = |E(E(Y|Bo)Yo)| <{E(YF)E(E(Y:|Bo)*)}%.  (29)

Notice that (25), (26), (28) and (29) imply that
lEsio >0, (30)

as n —> o0. Let

Uy = E(le‘%o) - E(le‘%—l)9 0 <r <L . (31)

The inequality (25) implies that {£| i u, |2} < i {E|u,|?}*% < 00
r=0 r=0

that we can set

XO = Z Uy
r=0
»Xr = T'XO’ (32)

where 7 is the shift operator. Notice that X = (X,) is a process of
martingale differences since

E(Xrl‘%h-l) = 0, (33)
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almost surely. The basic properties of conditional expectations imply
that

E(urur+k) = E(E(YrI$O)E(Yr+kI‘(B0))
— E(E(Y,|B_1)E(Y, 4B _1))
= E(Y,,,_kE(Y,lfBo)) - E(Yr«»kE(Yr"%—l))
=E(YE(Yo|B-,) — EXE(Yo|B-,-1)). (34)

Now to evaluate

E|X,|* = lim E| S 4]?

n— r=0
n n n-k
= lim [ B2 2% ZE(u,qu)]
nsw |50 K=1r=0

lim [BY — E(Yokl (Yol $-r-1))
+2 3 (E(FY0) = E(GE(Fo|B_pi- )]

— EY2 + 2§1 E(Y,Y,) = o> 0. (35)

Set T, = i X;. Since X is a martingale, by the preceding theorem
=1

1
Vo

is asymptotically normal with mean zero and variance one. Clearly

T, (36)

ET?2 = no? Thus, if one can show that '—12 ES, T, — o?asn— o0, it will

imply that % E(S, — T,)? — 0 as n — oo and consequently the desired
conclusion of the corollary. Again using properties of conditional
expectations we find

ES, T, =S 3 E(Y,X))
i=1 7=1

— nEX,Y, + ;:zl (n — JHE(YoX,)) + E(¥,X_,)}

=2 (n —j)E(YoX_))

i=0

=S - NE{YE V1B — BT 8,0}



Martingales 197

- ( m (n—j) — é S+ 1>)E<Y0E<Y—/+rlﬂ5—f>)

j=0r
=3 0 —NEXY-) = 3 3 BT ,.|8.)
+ 1 3 E(VE(T|%)

=S —NETY) — 3 5 EEF|B)

j=1lr=1

- g E(Y,Y)). 37)

Thus n=*E((S,T,) — o as n — co.

d. Problems

1.

2

.

Let X,;, X,, . . . be a Markov chain with transition probability
matrix P. Assume that 4 is a set of recurrent states of the chain. Let
N, < N, < - - - be the successive times that the chain takes values
in 4. Show that Xy,, Xy,, . . . is a Markov chain.

Consider X;, X,, . . . a sequence of independent identically dis-
tributed random variables with £|X,| < oo and N a stopping time
on the sample space with EN < oo. Show that

E(X; + - -+ + Xy) = E(N)E(X).

(This result is commonly referred to as Wald’s equation.)

Let X,, X,,. .. be a Markov chain with N; < N, < - - - a
sequence of stopping times. Show that Xy , Xy,, . . . is a Markov
chain.

. Let P be the transition probability function of a Markov chain. The

vector h is said to be subharmonic (harmonic) with respect to P if

=)
h>Ph If pivy =p, pii-1 =9 with 0<p <1, ¢g=1—p,
1=0, +1,. .., determine the harmonic and superharmonic
functions relative to P.

. Let X}, X,, . . . be a Markov chain with transition probability

matrix P. Suppose that / is superharmonic relative to P and that
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Elh(X,)| < oo for all k. Show that ¥} = A(X,),k=1,2,. .. ,isa
supermartingale.

6. Consider the random walk on the lattice points (7,7), 7,7 = 0,
+1, . . . in the plane with

bapasty = Papa-1.0 = Panaitd = Papai-n = Y4

Let A4 be a set of lattice points with B a subset of 4. Let N be the
first hitting time of the set 4 where it is understood that N = 0 if
one starts in 4. Consider.

P[XyeB C A|X, = (i,5)] = h(i,J),
where X, X,, . . . is the random walk. Show that

. [1 if(i,j)eB
h“”"{OK@ﬁm—B

and that
h(i,5) = Vath(i,j + 1) + k(g — 1) + A+ 1,5) + 2@ — 1,5)}
if (¢,7)¢4.
7. In the context of problem 6 let
P[XyeB C A,N = n|X, = (4,7)] = h,(,5),

where N is the first hitting time of the set 4. Show that

win~{s 2408

while
hy(i,7) =0 if (i,j)edand n > 0

and

ha(t,7) = Yalta-1(i + 1,7) + hoon(it — 1,7) + huoa(tj + 1)
+ hpo1(i) — 1))
if (i,7)44, n > 0. Also

Wid) = 3 o).
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8. Let (X,) be a martingale difference sequence relative to the sequence
of Borel fields $,, n = 1,2, . . .. Set

Sy = ;21 XJ; 012; = E(X?tlg"’n-l):
V2 =302 and s2=ES?=EV2
i=1
Show that if s7 4 co

sy 2max o? — 0 in probability
isn

V2 — 0% (constant) in probability
5723 E(X2(|X,| = e5,)|B,-1) — 0 in probability
i=1

as n— oo for each ¢ > 0, then S,/s, converges in distribution as
n —> oo to a normal distribution with mean 0 and variance o®

Notes

1. In the case of a continuous time parameter ¢, the Borel fields , are assumed to
be nondecreasing and right continuous in the sense that

(see Meyer [A10]).

2. P. Lévy (see his Theori¢ de I’ Addition des Variables Aléatoires, 1937) obtained the
carliest results on martingales. Much of the development of interest in martingales and
their application is due to the research and influence of J. L. Doob [12].

3. A broader class of limit theorems for martingales can be found in the paper of
Brown and Eagleson [A2].



IX

ADDITIONAL TOPICS

a. A Zero-One Law

Let A1, 4;, . . . be a sequence of events of the probability space
of interest and therefore by implication elements of the sigma-field on
which the probability measure is defined. Our object is to compute the
probability of the set of points belonging to an infinite number of the
sets 4;,7 = 1,2, . . . . Loosely speaking, we are interested in the prob-
ability that the 4; occur infinitely often. For convenience, this set will
be referred to as 4; i.o. and its complement (the 4; occur finitely often)
as 4;f.o. The event 4; i.0. belongs to the sigma-field of sets on which the
probability is defined since

Aiio. = N U 4 )
n=11i=n
Therefore
Pd;io0) < P(U 4) < 3 P(4) @
so that if
P(4;1.0) >0 3)
then
T P(4) 4)
1
diverges.

A parallel statement in the opposite direction is not possible for
general A;. However, it is feasible for independent 4,. Let us therefore
now assume that the 4; are a sequence of independent events. Now

difo.= (A1) =U N 4 5)

n=11i=n

(see Problem 1, Chapter II). Since the 4; are independent

PN A) = T (1 - PA) Sexp (= 2 P(A).  (6)
200
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If ZP(4,) diverges, P(\ A) = 0 by (6) and thus
i=1

P(4; f.0) = 0. )

It therefore follows that if 4, ¢ = 1, 2, . . . , is a sequence of independent
events, P(4; 1.0.) can only assume the two values O and 1. The values 0 and 1
correspond to the convergence and divergence of TP(4:) respectively. Such a
result is an example of a zero-one law.

b. Markov Chains and Independent Random
Variables

Let X,,n =0, +1, . . . , be a finite state stationary Markov chain
with transition probability matrix

P = (pi-i; 13] = 13 ..

. N 1
pii = P(Xnpa =]|Xn =) (1)

and instantaneous invariant probability vector

p=(si=12,...,m
b = P(X, =) )
pP = p.

For convenience we assume that the transition probabilities p; ; are all
positive. This implies that the process X, is an ergodic process without
any periodic states (see Problem 11, Chapter III). Our object is to show
that the process X, can be represented as a one-sided function f of independent
uniformly distributed (on [0,1]) random variables &, and its shifts, that is,

Xo = fEntny - - ). )

To carry out the construction, a continuous state stationary Markov
process {¥,},n = 0, £1, . . . , is introduced. Let

YVo=X,—U. n=0,%1,... “

where the U, are a sequence of independent uniformly distributed
random variables [0,1], and the process {U,} is independent of the
process {X,}. Notice that we have enlarged the probability space of the
X, process by adjoining the U, process. The process Y, is a stationary
ergodic Markov process with transition probability density

pOlY) =pisifi —1 <y <iandj—1<y < (5)
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and instantaneous density function

pO) = piifj — 1 <y <j, (6)
i,7j=1,2, ... ,m Notice that
Xo = [Ya] + 1 ™)

where [y] is the greatest integer less than y. Let F(y|y’) be the condi-
tional distribution function of Y, given Y,_;. Thus

i—1
FO) = "2 o+ sy =i +1) ®)

ifi—1<jy <iandj— 1<y <. Notice that F(y|y") with y’ fixed,
0 <y’ < m, increases strictly from zero to one as y ranges from zero to
m. Further, the function z = F(y|y’) with y fixed, 0 <y < m, maps
each y’ interval of the form i — 1 <y <7, i=1,...,m, into a
single z value. Of course, the z value depends on the fixed values of
y and 7. Introduce the random variable

&= F(YnIYn—1)~ 9)

The random variable &, = F(¥,|¥n—1) is uniformly distributed on
[0,1] and independent of ¥,—1 (see Problem IV.5). The Markovian
property of the ¥, sequence implies that &, is independent not only of
Y.—1 but also of all the preceding random variables Y,—g, Yp3, . . . .
The &, are therefore a sequence of independent uniformly distributed
random variables on [0,1].
Let
= min ;1 > 0. (10)

From (8) and (9) it follows that 0 < £,y < & implies that 0 < Yy <
1. If it is also true that 0 < &, < §, then by (8)

Y, = gn/pl.l‘ (11)
Further, knowledge of ¥, and £,4; determine Yy since
Yn+1 = F_l($n+l!Yn)~ (12)

Here F~1(z|y') = y is the inverse function of z = F(y|y’) as a function
of y, 0 < y < m, with y’ fixed. It is now possible to see how the process
Y, can be constructed out of the £, sequence by a one-sided function
and its shifts. Let 4, be the event

A, = {0 < &y, £a < 8} (13)
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Set

Gi(z,y) = F~'(2]y) (14)
Galzy,22,9) = F'(21|G1(23,9)) (15)

and recursively
Gi(zy, . . . yay) = F Y21 Gror(ze, -« . 21 )))- (16)

Consider the one-sided infinite sequence of independent random
variables

<3 En—2y Sn—-l, En (17)

and the independent events
w s Augy An—gy Ans (18)

defined in terms of these random variables. Notice that ¥ P(A4,-2)
k=1

diverges since all the events have the same positive probability. By
the zero-one law almost every realization of the sequence (17) must
lie in one of the events A2, £ = 1,2, . . . . Suppose j is the smallest
positive integer for which the realization of (17) falls into an event
Ao (j of course depends on the realization). Then

Yn = GB](‘fm R 5n-2j+1: §n-2j/p1,1) (19)

with probability one. Since X, is given in terms of ¥, by (7), X, is
determined in terms of &, &u—1, . .

Actually a necessary and sufficient condition that a general denum-
erable state stationary Markov chain have a representation of the form
(3) is that the chain be ergodic and have no periodic states (see [67],
[69]). The argument is more elaborate and the representation is not as
simple as (19).

c. A Representation for a Class of Random Processes

Let X; = Xi(w),0 £ ¢t £ T < =, be a reai-valued random process
continuous in mean square. Further, we shall assume that our repre-
sentation of the process is such that X;(w) is jointly measurable in ¢ and
w. As before the mean value EX,(w) is taken to be identically zero for
convenience. The mean square continuity of the process implies that
the covariance function

1(t7) = EX((w)X,(w) )

is continuous in ¢ and 7 jointly on the square 0 < ¢, 7 < T\
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The representation of the process X; will be given in terms of the
solutions ¢(#) of the integral equation

o) =\ [\ rtr)e(r) ar @)

with kernel 7(¢,7). A solution ¢(¢) of equation (2) is called an eigenfunction
of the equation and the corresponding number X its eigenvalue. Of course,
we are only interested in nontrivial solutions ¢ and hence the corre-
sponding eigenvalue A # 0. Further, the eigenfunctions of interest are
to be decent in that they are square integrable, that is,

[, el de < . 3)

More can actually be said. The kernel r(¢,7) is uniformly continuous
since it is continuous on the closed interval 0 < ¢, 7 < 7. This coupled
with an application of the Schwarz inequality implies that the eigen-
functions ¢(¢) of the integral equation (2) are all continuous. It has
already been remarked that the covariance function of a random
process is positive definite. Thus

T
/OT lo(d)]2 dt = [0 [ eOr(t)e(r) di dr > 0. 4)

It follows that all eigenvalues of the integral equation are positive. The
eigenfunctions o(t) can be taken as real-valued functions. For even if ¢(t)
were complex, by (2) its real and imaginary parts separately would be
eigenfunctions with eigenvalue A. Consider now any two eigenfunctions
¢1(¢), 2(2) corresponding to distinct eigenvalues Ay, Ag, A1 5 A2. Then

T
T
Xl; A e1(t)ea(t) dt = [ / o1(O)r(t,r) a(r) dr dt

T
-4 [, orDeal) de ®)

by the symmetry of the kernel 7(¢,7). This cannot hold unless the eigen-
functions are orthogonal, that is,

[, exe) dt = 0. ©)

It is possible to have several eigenfunctions corresponding to one
eigenvalue X. However, as we shall later see, there can be at most a
finite number of linearly independent eigenfunctions corresponding to
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one eigenvalue (see [1]). Further it will be convenient to assume that
the eigenfunctions have been orthonormalized by, for example, the
Gramm-Schmidt procedure (see [1]).

The following theorem on the integral equation (2) will be used in
the representation of the process X;. The eigenvalues \; of equation (2)
are countable in number. Each eigenvalue has at most a finite number of linearly
independent eigenfunctions ¢;(t) (assumed orthonormal). Furthermore,
the kernel r(t,r) has the following representation in terms of the eigenfunctions
@i(t) and the corresponding eigenvalues \;

©

() = z OV @)

t=1

This result will be derived later on. Actually the convergence in (7)
is uniform.

The expansion (7) will now be used to obtain a representation of the
process X;, 0 < ¢ £ T, in terms of the eigenfunctions and eigenvalues
of equation (2). Now

[, Ex@l @< [T irepea < . ®)
Fubini’s theorem (see section a of Chapter IV) then implies that
T
Jo 1| at ©)

is finite for almost every realization of the process. Thus integrals of
the form

T
[\ X)) e (10)
are all well defined. Let
Z= VX [ Xe) a. a1

The random variables Z; are orthonormal since

T
Ez.Z; = [[ e@ein)r(t) dt dr /NN,
0

= [, e0e®) diu/N" = 8 (12)
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where E(X,X,;) = r(t,r). Further, using this property,

EX,— 3 Ze)/ VN
= N — N
=rt) =2 2 i) E(X.Z) /N + 2 ¢l0/N (13)

N
= r(t,t) — ,Z;l i (t) /N
since
EXZ) = VN [[" e & = e/VE (14

It follows from (7) that
Xi= 2 Ze)/ VN (15)

in the sense of mean square convergence since (13) approaches zero as
N — . Notice that the Z; are independent normal variables with mean zero
and vartance one if X is a Gaussian process.

Let us now derive the results on the integral equation (2) that were
assumed in the previous discussion. Let the ¢;(f) i =1, ..., n be
any finite number of orthonormal eigenfunctions of (2) and the A; the
corresponding eigenvalues. Set

sltr) = 1) = 2 o)M= rltr) = qultr). (16)
Any square integrable function g can be expanded in the form
¢ = 2 awi) + 10 )

where % is orthogonal to ¢:1(?), . . . , ¢a(f). It follows that

T T
[fetysattm)a(x) dedr= [[ borenier) dedr > 0. 9)
0 0

Let g(¢) equal 1/¢ (€ > 0) in an interval of length € about £, and zero
elsewhere. The function s,(f,7) is continuous in ¢ and 7 jointly since
r(t,r) and the eigenfunctions ¢; are continuous. On letting € — 0 in
(18) we therefore obtain

sltnte) = rltots) = 2 H/N 2 0. (19)
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Integrate the inequality (19) from zero to T to obtain

/OT r(4t) di > E 1/ (20)

i=1

First of all it is now clear that there can be at most a finite number of eigen-
functions corresponding to one eigenvalue N. For if there were an infinite
number, all the \; in (20) could be taken equal to this eigenvalue X and
the right-hand side of the inequality would be unbounded leading to a
contradiction. Further there can be at most a countable number of eigenvalues.
If there were an uncountable number of eigenvalues, an infinite number
of them would have to lie in one of the sets (1,), (}4,1), . . .,
(Lgmtilgmy, . . . . If the A in (20) were set equal to eigenvalues
lying in this particular set, the right-hand side of the inequality would
be unbounded again leading to a contradiction. It is therefore seen that

;"‘pg(z)m < rtl) < . 1)

From this it follows that

|2 e@eM S L2 GOM 2 @A @)
so that
S aOeln/N = g6) (23)

is convergent. Actually (22) indicates that the convergence is uniform
in 7 for fixed ¢ so that (23) is continuous in 7 for fixed ¢. Of course, the
preceding statement is valid with 7 and ¢ interchanged.

We shall now introduce notation and definitions that will be helpful
in the following discussion. Given any two functions f, g that are square
integrable on 0 < ¢ < T, let (f,g) denote the “inner product” of the two
functions where

T
() = [, 108 . (24)
It is immediately clear that

(fg) = (g’f) (25)
(af + Bh, &) = a(f,g) + B(hg) (26)

and
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for any square integrable functions f, 4, g and real numbers «, 8. Let
lIfll denote the “length” of a square integrable function where

Il = s = { [, Il af ™ @7)

The Schwarz inequality gives us a bound on the inner product (f,g)
in terms of the lengths ||f{], llgl| of £, £

(L)l < [l lell- (28)
The Minkowski inequality can then be rewritten as
If + gl < lIfll + llgl (29)

in this notation where f, g are understood to be square integrable.
The terms ““inner product” and “length” used imply that the square
integrable functions can be regarded as vectors. This is in fact the case.
They are, however, vectors in an infinite dimensional space. The same
notation, at the risk of hopefully small confusion, will be used for a
function of two variables at times. Thus, if r(¢,r) and s(¢,7) are square
integrable functions on 0 < t,r < 7, (r,5) and |[|r]| will be understood
to be

/ 7 r(t7)s(t,7) dt dr (30)
and ’

{ﬁ Ir(e,7) |2 de dr}“ G1)
respectively. °

Let r be square integrableon 0 < t,7 < 7. Then the integrable operator
R generated by r

R ®) = [\ rtr)e) dr = 1) (32)

takes square integrable functions g into square integrable functions
hon 0 L ¢t < T. For by the Schwarz inequality

Al = [IRgll < irll - flgll- (33)

In fact, it is a bounded operator in the sense that

= sup VRl o URel i o o
IRl = wiso Nell ~ iz llell Sl < oo (34
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The constant ||R]| is called the norm of the transformation R. We shall
show that given any sequence of functions g, bounded in mean square,

llgnll < K < oo, (35)

the sequence of functions Rg, = h, contains a subsequence #,, that
converges in mean square

”}an - hni” —0 (36)

as k, j — «. Of course, the subsequence converges to a square inte-
grable function A(¢) by the Riesz-Fisher theorem. This property of an
operator is sometimes referred to as complete continuity. Notice that
the sum of two integral operators of type (32) that are completely continuous
also has this property. A simple operator of type (32) with 7(¢,7) of the form

ri(tr) = a()B(r), (37)

where «, 8 are square integrable on [0,7], is completely continuous.
For

(Rig) (1) = (B:g)a(®). (38)

If g, is a sequence of functions bounded in mean square, the sequence
of numbers (B,g.) is bounded and therefore has a finite limit point c.
Let g, be a subsequence of g, such that (8,g.,) — ¢ as £ — . If we
take h(f) = ca(t), it is clear that

[Rign, — All = llell - [(Bigns) — ¢ =0 (39)

as k — . Thus, the very simple kernel 7(¢,7) of the form (37) generates
a completely continuous operator. Further it is immediately clear
that a kernel r(¢,7) which is the sum of a finite number of terms of the
form (37), namely

(er) = 2 a0pio) (40)

generates a completely continuous integral operator. Consider now a
general square integrable function r(¢,7) on 0 < ¢, 7 < 7. The Fourier
series of r(4,7) int, ron 0 < ¢, 7 < T converges to r(4,7) in mean square
(see the remarks on mean square approximation of functions in section a
of Chapter IV). Let rx(f,7) be a truncation of the Fourier series with a
finite number of terms and such that

llr — vl < 1/N. (41)

Since 7y has only a finite number of terms, it is of the form (40). Let
Ry be the integral operator generated by ry. We have already shown that
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the operators Ry are all completely continuous. Our object is now to
show that the operator R they approximate is also completely con-
tinuous. Let g, be a sequence of functions bounded in mean square.
Let g be a subsequence of g, such that Rig{P converges in mean
square. Take g® a subsequence of g{ such that Rg!® converges in
mean square. Generally, let g be a subsequence of g%~ such that
Rig® converges in mean square. We derive a sequence ¢* by taking
the 4-th element of the £-th sequence. Notice that Ryg{®¥ converges in
mean square for every N. This implies that Rg{® converges in mean
square for

I Rg — Re | | |
SR — Ru)gPll + IRvgl? — Rag?|l + (R — Ruw)gf||
< lir = gl + a2 + il - e = 291 (“2)

and (42) can be made as small as is desired by taking N, £, j sufficiently
large. Therefore Rg{¥ converges in mean square to some function, say
h(z).

Consider the quadratic form (Rf,f). Let

Ng = sup [(Rf,f)]. (43)
=1
Since
{RENE < IRA - I (44)
it follows that
Ne < |R]l. (45)

Assume now that r(t,r) is symmetric, that is, r(t,r) = r(r,t). We will show
that in this case

Nr = |R]. (46)
Let X > 0. Then

IRf(|* = (RA.Rf)
o oo L)~ (e - L)L)
<son o + -]

= 34 [N+ g IR | @7

The minimum of the last expression is assumed by setting A? = || Rf||/|| |l
if ||Rf]| ¢ 0. The inequalities

IRf1> < Nzl RAL - 17l IRA < Nelifl (48)
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then follow. Notice that these inequalities hold even if ||Rf|| = 0. But
they imply that ||R]] < Ng so that the equality (46) is established.

Assume that ||R|| > 0. We shall show that R then has at least one
nontrivial eigenfunction ¢ with eigenvalue A # 0. Let f, be a sequence
of square integrable functions with

Ifall = 1, |(Rfusfa)] = IRl = Ng asn— o. (49)
We can already assume that they have been chosen so that
(Rfwfn) =N = |IR]| (50)
(if R is positive definite). Then
0 < |[Rfw — Mall® = |Rfall* = 2M(Rfwfa) + NlIfuli% (51)
The right-hand side of (51) tends to zero as n — o since

”an“ < ”R“ = N\, (Rfu,fz) =\ (52)
Thus
Rfn — M —0 (53)

in mean square. By the complete continuity of R, there is a convergent
subsequence Rf,, of Rf, that converges in mean square. And then by
(53) it follows that f,, itself has a limit in mean square, say ¢. Therefore

Ro = ho, (54)

that is, ¢ is an eigenfunction of (2) with eigenvalue A.

Consider thekernel s(t,r) = r(t,r) — q(47). It is symmetric and square
integrable. Let the corresponding integral operator be S. Notice that
S¢; = 0 for all the eigenfunctions ¢; of R. Consider any square inte-
grable function f. It has an expansion

f= -? (fredei + R (55)

where (%,¢;) = O for all 7. Therefore
Sf = Sh. (56)

Now we must have Sk = 0 for all such 4 for otherwise the norm |||
would be positive and § would have a nontrivial eigenfunction among
the square integrable functions % orthogonal to the ¢;’s. But such an
eigenfunction would also have to be an eigenfunction of R leading us
to a contradiction since the ¢;’s are supposed to be all the eigenfunctions
of R. Therefore Sf = 0 for all square integrable f. We have previously
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shown that continuity of r(¢,7) implies continuity of ¢(¢,7) in 7 for fixed
t. It follows that s(¢,7) is continuous in 7 for fixed ¢. But then

S = [," brer) = a@nf) ér = 0 (57)

for any continuous f. Taking f(r) = r(t,r) — q(¢,7) we see that r(t,7) —
g(t,r) = 0. Thus, the equality (7) is established. The uniform con-
vergence of the series follows from the fact that the truncated series

>~ o (i)
Zl —7‘.—— (58)

which is continuous in ¢ and 7= converges to a continuous function

7(t,7) as follows. It is clear that
\' wt)eln) ., i 2()gi(7)
Y, "G v A

i=1 i=n+1l
s{E O 2 «p%(ﬁ/xi}l/ﬂ.
i=n+1 i=n+1

Now i @Z(t)/A; is continuous and converges to r(¢,t) monotonically.
1
By a result called Dini’s theorem (see [1]) Zﬁ @3(¢)/A; converges to
1

o
r(¢,t) uniformly. But this implies that > ¢(¢)/A; converges to zero
n+1

uniformly. Thus, the series (58) converges to r(¢,7) uniformly as
n— co.

An interesting illustration of the basic theorem (15) of this section
is provided by the Wiener process X;on 0 < ¢ < 1. As we have already
noted in section d of Chapter IV, the Wiener process is a normal
process with covariance function

r(tr) = min (67), 0 < ¢, 7 < 1. (59)
The integral equation (2) is
A ]0‘ min (4,r)e(r) dr
r [y 7o) dr + /. ' tg(r) dr}- (60)

e(t)

i
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Equation (60) implies that
¢(0) =0 (61)

for every eigenfunction ¢. On differentiating the equation with respect
to ¢ we obtain the relation

¢ = [ o) dr (62)
This in turn implies that
(1) = 0. (63)
The differential equation for ¢
(@) + Ae(t) = 0 (64)
is obtained by differentiating (62). The solutions of (62) are of the form
o(t) = Asin /Nt + Bcos VAt (65)

The restraint (61) implies that B = 0 and the second restraint (63)
implies that A = (£ 4 14)%2 The orthonormalized eigenfunctions of
(60) are therefore

ee(t) = V/2sin (k + 1)t (66)

with corresponding eigenvalues A\, = (k + )% k=1, 2, . ...
The Wiener process X; on 0 < ¢ < 1 therefore has the representation

X, =2 k§1 Zisin (k + Y)mt/(k + 1), 67)

d. A Uniform Mixing Condition and Narrow
Band-Pass Filtering

The concept of mixing was introduced in section b of Chapter V.
This property is appreciably stronger than that of ergodicity. However,
a central limit theorem need not hold for a dependent process satisfying
even this requirement. We shall discuss here the property of uniform
mixing which was introduced in [66], [70] and is strong enough to
imply a central limit theorem.

Let X,(w) = X;, —® < ¢ < o, be a random process (not neces-
sarily stationary) that is measurable in ¢ and w jointly. Let @&, be the
Borel field of events generated by the random variables X, u < ¢, and
§, the Borel field of events generated by the random variables X,
u > 7. Thus ® and &, represent the information given by knowledge
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of the process before ¢ and after 7 respectively. The process X, satisfies
a uniform mixing condition if there is some positive function g(s) defined for
0<s< o with g(s) > 0 as s > ® such that for any pair of events Be®,
FS,t <,

|P(B M F) — P(B)P(F)| < g(r — ). 6]

Further any process ¥, derived from the X, process by operations over a
finite time interval and their shifts is also uniformly mixing. Specifically,
if for some fixed L, 0 < L < «, and every ¢ Yi(w) is measurable with
respect to the Borel field generated by X,(w), t —L<u <t it
follows that the process ¥Yi(w) is uniformly mixing. Asymptotic normality
for time averages of a discrete parameter uniformly mixing process was
obtained in [66] under certain moment conditions. However, the proof
can easily be modified so as to get the corresponding result for contin-
uous parameter processes. Recently Kolmogorov and Rosanov obtained
conditions under which a stationary Gaussian process is uniformly
mixing [47].

Consider a process X;, — oo <t < oo, with finite fourth moments,
EX* < o, and continuous in the mean of fourth order, that is,

EX, — X,|t—0 (2)

as t — 7. It will be convenient to fake the first moment EX, as identically
zero. Further assume that X, is stationary in moments of second order and
Sfourth order so that

E[XyX,] = r(ta — t1)
E[Xt‘ngXtath = P(tz — ty, l3 — b1, by — tl). (3)

Introduce the fourth-order cumulant function

Qts = tiyts — by ta — 1) = Ptz — b1, 85 — t, ts — ta)
— Pg(ts — tryt3 — ti,ta — t1) (4)

where Pg is what P would be in the case of a normal process, namely,

PG(tZ - tl, t3 — tl, ty — tl) = f(tz - tl)f(t4 - 33)
+ r(ts — t1)f(t4 _— lz) + T(t4 - tl)f(ts —_ tl) (5)

(see [54]). Notice that if r(f) is absolutely integrable, the spectral
density f(A) of the process X; exists and is continuous. We shall assume
that r(t) and Q(t1,ts,ts) are absolutely integrable over one- and three-dimensional
space respectively. Further the spectral density f(\) will be assumed positive
everywhere.

In the communication engineering literature it is often assumed



Additional Topics 215

that a narrow band-pass filter applied to a stationary random input
yields an output that is approximately normally distributed. Such an
output is of the form

/0 " (X, dt (6)

where the weight function wr(t) is chosen so that the spectral mass of
X; away from A, —X\ () the frequency of interest) is damped out and
that around N\, —\ is passed through. We shall consider a class of
weight functions wr(¢) large enough to include such filters. Let

W(T) = [OT w2 (0) dt. @

Assume that the weight functions wy(¢) satisfy the following conditions:

1. W(T) > w as T — (8)
2. The functions Wr(t) are slowly increasing in that

@ [ ler®]rdi = o(W(T)) as T — e )
A(T)

for any sequence of subsets A(T) of [0,T] with the Lebesgue measure (of
A(T)) m(A(T)) = o(T), uniformly in m(A(T))/ T as T — « and

(b) wr(t) = o(W(T)*) uniformly in t as T — oo (10)
7—{h)
3. lim W(T)~ [ wrlt + |R)wr(t) dt = p(h) (11)
e 0

exists for every h and is continuous in h. The limit function p(%) can be seen
to be a positive definite function and therefore has a representation

p(h) = [, em aM) (12)

with M(\) a nondecreasing bounded function by Bochner’s theorem.
Notice that dM(A\) = dM(—)\) since p(h) = p(—4). When wr(t)
corresponds to a narrow band-pass filter, conditions 1 and 2 of this
section will usually be obviously satisfied since the functions wr(t) are
typically uniformly bounded in 7" with W(7") the same order of magni-
tude as 7. In the case of narrow band-pass filtering about u, M())
will increase only at p and —pu. Actually the conditions on wp(f) are
general enough to cover situations that often occur in regression
problems as they arise in time series analysis [26].
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Let Xy EX, = 0, be a uniformly mixing process stationary up to moments
of fourth order and satisfying the conditions on r(t) and Q(ty,ta,ts) specified
before. Further let the weight function wr(t) satisfy the assumptions 1, 2,
3 of this section. We shall then show that

W(T)-% [) T wr() X, dt (13)
is asymptotically normally distributed with mean zero and variance
2 [ ) aMQ). (14)
Our proof will follow that given in [70].
Let
S(T) = IOT wr ()X, dt (15)
and set
G+D)p(T)+79(T)
umn = [ w@xad (16)
(T +a(T)]
G+ +e(T)]
VA(T) = [ wr(t) X, dt an
(G+1)p(T)+34g(T)

7j=0,1, ..., k—1. Here k[p(T) + ¢(T)] = T and k = k(7T),
p(T), ¢(T) will be chosen so that &, p, ¢ — © and ¢(7)/p(T) — 0 as
T — . The interval [0,77] is being divided into an alternating suc-
cession of big blocks and small blocks, each of length p(7") and ¢(T)
respectively. The Uys and Vs are the large and small block integrals
respectively. We first show that the contribution of the small block
integrals is negligible. Now

E Ij-i“ V,W(T)= *_E I}J;) wr(O) X, dt W(T)¥% lz

< [ [r(w)] [ lwr(t + wwr(t)| dt du W(T)™1
A(T)
< [ Ir(u)l[ / (s + w2 de [ |wT(t)|2a't]yz W(T)"'  (18)

A(T) A(T)
where

AT) = U )T + (G = Da(T) S ¢ <JT) + o). (19)

But (18) must approach zero because of the absolute integrability of
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r(u) and condition 2 of this section. But then
k
SV,W(T)y % —0 (20)
1

in probability as 7" — .
Our object now is to show that

S Uw(T) 1)
1

is asymptotically normally distributed with mean zero and variance
(14) as T — . The theorem on asymptotic normality of S(T) W(T)~*
would then follow immediately for (20) is asymptotically negligible.
Introduce for this purpose the distribution functions

Gir(x) = P{UW(T)™ < x} (22)
and the events
A(5, Tym;,8) = {mo < UW(T)™7% < (m; + 1)8}. (23)
Now with my, . . ., m, integers

k k
P> P(M A(j,T,m;,0)) < P(Z UW(T)™ < x)
i+ - Fmtbise  g=1 =1

k
(mit - -« 4-mr)o<a j=1
Notice that
P( max |UW(T)™ >mn) <e (25)
i=1..., k

where 7 = k(C/<)** with C a constant. This follows from the fact that
k
E| max [|UW(T)*||* < E| 2 |[UW(T)*|]*
=1k 1

k
S W(T)-'(Z EXUP)? < BC (26)
i=1

and an application of the Chebyshev inequality.

Further
k
k - -

PN 4], Tmy)) — T pcac, 7m0

(mit -« - +mp)éd <z ! (mi4 -+ +mp)éka 1

k
<k (27) d(T) +2¢5 (27)
k

For the probability contributed by all the sets M\ A(j, 7,m;,5) for which
i=1
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max [U;W(T)~%| > r, is by (25) at most & Consider all the sets
k

M A(j,T,m;,8) for which max |U;W(T)~*| < 7. By repeated applica-

j=1

tion of the uniform mixing condition it is clear that

. k
P(]QIA(i,Tj,m,ﬁ)) — [ PG, Tymi0)) | < ke(g(T)). (28)
j=1
Since there are (27;/8)* sets of this form, the desired inequality (27)
is obtained.

Inequality (27) will be applied later to show that the sum of the
U;W(T)™" has the same asymptotic distribution as the sum of inde-
pendent random variables with the same marginal distributions, as
long as k(T), ¢(T), p(T) are appropriately chosen. But first let us see
what the asymptotic distribution of the sum of such independent
random variables would be. The distribution function of the sum
of these £ independent random variables is

Girx + -+ *Grp(x), (29)

the convolution of Gy r(x), . . . , Grr(x). We now show that (21) is
asymptotically normally distributed with mean zero and variance (14). Now

k
z E|U;W(T)~¥2 — [_"°° r(w)p(u) du = 2 /_“; ) M) (30)
i=1
as T'— o by conditions 2a and 3 of this section. Further (30) is posi-

tive since f(\) is positive everywhere. By Lyapunov’s form of the
central limit theorem (see Logve [53]), if

k k
Z E\UW(T) = o( 2 EIU;W(T) ™) (31)
i= i=

expression (21) is asymptotically normal with mean zero and variance
(14). But
G+ Dp(T) +359(T)
Euw @) = wn [[[[ wrtwreen)wne)
(M +a(T) (32)
fr(t = 2)r(ts — ty) + r(tr — ta)r(te — to) + r(ts — t)r(ta — t3)
+ Q(tz — l1l3 — ti, by — tl)] dty dlg dta dt4.

The sum over j of the first three terms on the right-hand side of equality
(32) is

3 3 EUW(T)HP. (33)
7=1
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By condition 2a, E{U;W(T)~*|? approaches zero uniformly in j. This
coupled with (30) implies that expression (33) approaches zero as
T — . Consider the last term on the right-hand side of (32). By
condition 2 and the absolute integrability of Q, the sum over j of the
last term on the right of (32) tends to zero as T"— . Lyapunov’s
condition for the central limit theorem is therefore satisfied.

Notice that

k
Girx -+ - *Grp(x — k8) < [ P(AG, Tm;,8))
(mit - - +ma+k)é<z j=1
k
< ) Il PAG, Tyms9) < Grax - - - +Gualx + ko).

(mi+ -+ - +mp)é<z  j=1
(34)
The asymptotic normality of (29) coupled with (27), (30), (31), and
(34) implies the desired theorem if §(7), &(T), p(T), ¢(T) can be
chosen so that

KDp(T) +¢(D)] =T

K(T), p(T), ¢(T) — =

o(T)/p(T) —0 (35)
K(T)8(T) — 0

k (‘3“5—) @(T)) —0.

The condition £(7")8(T") — O is easily satisfied if we set § = k=2 The
difficult condition to satisfy is the last one. Now

k(21,/8)% < kskD¥ (36)

with D = 2(C/g)*t. Given the existence of a function g satisfying (1),
it can always be taken so that

gw) > (u+ 1)-L (37)
If % is chosen so that

k < [— log g(q(T))]* (38)

the last of the conditions (35) is satisfied. Keeping these remarks in
mind, it is clear that if one takes ¢(T) = T for large T, all the condi-
tions (35) can be satisfied. The proof of the asymptotic normality of
(6) is now complete.
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e. Problems

1. Consider the two-state (say 0 and 1) stationary Markov chain X,
with transition probability matrix P = (‘Z Z)» 0<p<g<i,

g =1 — p, and instantaneous probability vector (14,14). Show
that the random variables

1 if (X4, Xe-1) = (1,1) or (0,0)
0 otherwise

b = E(XpXo1) = ‘

are independent and identically distributed. Further show that
X, is determined by &, &1, . . ., En—ty Xn—g—1 for every £ = 0,
1,2, ... .Is X, determined by &, &.—1, . . . ? If not, why not?

2. Let X; be a Gaussian process with covariance function ¢(f,7) = min
(7) —tr, 0 <t, 7 < 1. Find the representation of X; on [0,1]
in terms of the eigenfunctions and eigenvalues of the integral equa-
tion with kernel ¢(,7).

3. Consider the previous problem with covariance function ¢(f,7) =
exp (—|t—7), 047 < 1.

4. Consider the previous problem with covariance function
o(t,r) = Zaj exp (—Bilt — 71),

0 <t, v £ 1, where the s are positive and the «;’s are chosen so
that the function ¢(¢,r) is positive definite.

5. Let & be the Wiener process. Suppose X; is a process constructed
so that X is functionally dependent on ¢ — & fort — L <7< ¢
where L is a fixed positive number. Is X; uniformly mixing?

6. Let £ be a continuous parameter (— o < ¢ < ) process with the
increments of & (& — &) over disjoint intervals independent.
Further, assume that & — & (¢ > 7) is Poisson distributed with

T
mean A(¢ — 7). Examine the limiting distribution of %, / (ne — N) dt
0

where %, = & — &3 as T — «. What can you say about it in
terms of the central limit theorem derived in this chapter?
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Notes

1. The zero-one law derived in section a is commonly called the Borel-Cantelli
lemma.

2. The problem considered in section b can be posed in the broader context of real
valued Markov processes or strictly stationary processes. Refer to references [A7] and
[67] for work in this general setting. There are still many interesting open questions.
Some related work is taken up in the isomorphism problem (see, for example, D.
Ornstein [A11]).

3. Most of section c is devoted to the proof of a result on integral equations
called Mercer’s theorem. It was felt that it would be more convenient to have a
proof in the text rather than to refer the reader to a book with material on integral
equations (such as [63], for example). Notice that the result on the representation
of processes follows almost immediately from Mercer’s theorem. The representation
theorem for processes is usually attributed to Karhunen and Loéve.

4. The uniform mixing condition of section d has been of increasing interest in
recent years (see [A9] and [A13]).

.
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INDEX

Absolute continuity, 86fFf.

Absorbing barrier, 43

Aggregation problem, 62, 67
Aliasing, 151

Approximation, 21ff., 33, 35, 76, 168
Autoregressive scheme, 164

Backward equation, 125ff, 138, 140,
144f%.

Band-pass filter, 214fF.

Bernstein polynomial, 21ff., 33

Bias, 170

Binomial distribution, 13ff., 18ff., g3ff.

Birth and death process, 133ff.

Borel field (=sigma field), 68

Borel function, 70

Borel set, 69

Borel-Cantelli lemma, 220

Branching process, 42

Brownian motion, 94, 122, 137fL.

Cauchy distribution, 96

Central limit theorem, 22ff., 33ff., 85ff.,
97, 191ff., 218

Chapman-Kolmogorov
60, 121, 130ff,, 133

Characteristic function, 8off., 97

Chebyshev’s inequality, 20

Closed set of states, 52

Cointossing, 12ff.

Conditional: expectation, 8g; proba-
bility, 1o, 87ff., go, 112ff.

Convergence: almost everywhere, 75;
in mean square, 75; in probability, 75

Convergence theorem, martingale, 188

Convex function, 34

Convolution, 20, 39

Countable additivity, 9, 69

Covariance, 82; function, 149

equation, 38,

Density function, 78, 86
Derivative, 86fF.

Die, off.

Difference equations, 152, 163

Diffusion: equation, 25, 141; process,
133ff.

Distribution function, 23ff., 76ff., 89, 91,
96ff.; marginal, 79

Eigenfunction, 204

Eigenvalue: of a matrix, 45ff., 57, 64;
of an integral equation, 204

Eigenvector, 45, 57

Entropy: of an experiment, 29ff., 64;
of a stationary process, 115ff.; con-
ditional, 29

Ergodic: process, 104fT., 100ff., 116, 118,
203; theorem, ro2, rosfl, 119, 159,
181

Expectation, 15ff., 78, 80

Exponential distribution, g6

Fair game, 182

Field, 8, 72ff., 77

Fokker-Planck equation, 137

Forward equation, 125fT., 137f%., 142ff.

Fourier: representation, 153; -Stieltjes
transform, 8o, 98, 150; transform,
86

Frequency response function, 153

Gaussian ( = normal), 219
Generating function, 18, 33, 39, 53ff.
Growth process, 39

Harmonic analysis ( = Fourier analysis),
149

Harmonic, superharmonic functions, 197,
198

Heat equation, 25

Hitting time, 182

Independence: of events, 11, 200; of
random variables, 13, 16, 37, 79, 81,
96ft., 110, 201

Inner product, 207

Input-output problem, 66
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Integral, 7off.; equation, 204ff.; ran-
dom, 156; Riemann-Stieltjes, 78

Integrodifferential equation, 125

Invariant: function, 105, 107; set, 105,
108

Jensen’s inequality, 34
Jump process, 124fF.,, 141ff.

Large numbers, law of, 20ff.
Lebesgue: measure, 74; sets, 73
Lévy, P.: inversion formula, 86

Markov chain, 36ff., 102, 11iff,, 119,
130ff,, 201, 219; function of, 59ff.;
irreducible, 52; reversible, 63

Markov process, 120ff.

Markov property, 36ff., 64, 66, 121ff.

Martingale difference, 184

Martingales (super, sub), 182ff., 185

Matrix, 36; covariance, 82; irreducible,
46; with non-negative elements. 44ff.;
positive definite, 82

Mean, 15

Measurability, 69ff., 74

Measure-preserving transformation, 103

Metric transitivity, 105ff., 109

Mixing, 110ff., 118; uniform, 213

Moment ( = expectation), 15ff.; facto-
rial, 18

Monte Carlo, 98

m-step dependent process, 118

Norm, 209

Normal: random variable, 79; jointly
normal random variables, 82ff., go,
97; process, 94, 123, 138, 169

Null state, 53

Operator, 208

Optional sampling, 186

Orthogonal increments, process of, 156
Orthogonalization, 161, 205

Parabolic differential equation, 135

Periodic state, 53

Periodogram, 170

Persistent state, 53, 65

Poisson: distribution, 14fF, 18ff, 33ff,
38; compound Poisson distribution,
65; process, 94ff., 100, 122ff.

Population model, 39

Positive definite: function, 149; matrix,
82; sequence, 151

Index

Prediction, g7, 160ff., 181
Probability: measure, 72; space, 13, 35,
69

Random: variable, 13, 37, 69; phases,
model of, 151; process, 37, 9iff;
walk, 42ff.,, 54, 65

Recurrence time, 52; mean, 52ff.

Recurrent state, 53, 66

Reflecting barrier, 65

Sample: functions, 93; points, 8ff., 36,
68, 92; space, 10

Semigroup, 148

Separability, 94

Shift transformation, 103

Shot noise, 100

Sigma-field, g9, 68ff.; completed, 72;
product, 74

Spectral: density, 150; distribution func-
tion, 150; estimate, 169ff.

State space: of a Markov chain, 36; of a
Markov process, 120

Stationary: process, 44, 10off., 183;
transition mechanism, 37, 122; weakly
stationary process, 149fF.

Statistical mechanics, 101, 119

Stochastic process, 91

Stopping time, 184

Theorems: Bochner, 81; Carathéodory,
73; Fubini, 74; Kolmogorov, 92;
Liouville, 102; MacMillan, 114ff.;
Mercer, 220; Radon-Nikodym, 86ff.;
Riesz-Fisher, 76; Weierstrass, 21, 33

Toeplitz form, 181

Transient state, 53

Transient response function, 152

Transition: matrix, g37; probability
function, 121

Uniform: distribution, 78; integrability,
72, 189

Vector: extremal, 47; invariant prob-

ability, 44
Vector-valued process, 96, 179ff.

Wald’s equation, 197
Wiener process, 94

Zero-one law, 149fT.



